Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac spinor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition== The '''Dirac spinor''' is the [[bispinor]] <math>u\left(\vec{p}\right)</math> in the [[plane wave|plane-wave]] ansatz <math display="block">\psi(x) = u\left(\vec{p}\right)\; e^{-i p \cdot x} </math> of the free [[Dirac equation]] for a [[spinor]] with mass <math>m</math>, <math display="block">\left(i\hbar\gamma^\mu \partial_\mu - mc\right)\psi(x) = 0</math> which, in [[natural units]] becomes <math display="block">\left(i\gamma^\mu \partial_\mu - m\right)\psi(x) = 0</math> and with [[Feynman slash notation]] may be written <math display="block">\left(i\partial\!\!\!/ - m\right)\psi(x) = 0</math> An explanation of terms appearing in the ansatz is given below. * The Dirac field is <math>\psi(x)</math>, a [[theory of relativity|relativistic]] [[spin-1/2]] [[field (physics)|field]], or concretely a function on [[Minkowski space]] <math>\mathbb{R}^{1,3}</math> valued in <math>\mathbb{C}^4</math>, a four-component complex vector function. * The '''Dirac spinor''' related to a plane-wave with [[wave-vector]] <math>\vec{p}</math> is <math>u\left(\vec{p}\right)</math>, a <math>\mathbb{C}^4</math> vector which is constant with respect to position in spacetime but dependent on momentum <math>\vec{p}</math>. * The inner product on Minkowski space for vectors <math>p</math> and <math>x</math> is <math>p \cdot x \equiv p_\mu x^\mu \equiv E_\vec{p} t - \vec{p} \cdot \vec{x}</math>. * The four-momentum of a plane wave is <math display="inline">p^\mu = \left(\pm\sqrt{m^2 + \vec{p}^2},\, \vec{p}\right) := \left(\pm E_\vec{p}, \vec{p}\right)</math> where <math>\vec{p}</math> is arbitrary, * In a given [[inertial frame]] of reference, the coordinates are <math>x^\mu</math>. These coordinates parametrize Minkowski space. In this article, when <math>x^\mu</math> appears in an argument, the index is sometimes omitted. The Dirac spinor for the positive-frequency solution can be written as <math display="block"> u\left(\vec{p}\right) = \begin{bmatrix} \phi \\ \frac{\vec{\sigma} \cdot \vec{p}}{E_\vec{p} + m} \phi \end{bmatrix} \,, </math> where * <math>\phi</math> is an arbitrary two-spinor, concretely a <math>\mathbb{C}^2</math> vector. * <math>\vec{\sigma}</math> is the [[Pauli matrices#Pauli vectors|Pauli vector]], * <math>E_\vec{p}</math> is the positive square root <math display="inline">E_\vec{p} = + \sqrt{m^2 + \vec{p}^2}</math>. For this article, the <math>\vec{p}</math> subscript is sometimes omitted and the energy simply written <math>E</math>. In natural units, when {{math|''m''<sup>2</sup>}} is added to {{math|''p''<sup>2</sup>}} or when {{math|''m''}} is added to <math>{p\!\!\!/}</math>, {{math|''m''}} means {{math|''mc''}} in ordinary units; when {{math|''m''}} is added to {{math|''E''}}, {{math|''m''}} means {{math|''mc''<sup>2</sup>}} in ordinary units. When ''m'' is added to <math>\partial_\mu</math> or to <math>\nabla</math> it means <math display="inline">\frac{mc}{\hbar}</math> (which is called the ''inverse reduced [[Compton wavelength]]'') in ordinary units.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)