Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete-time Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Relation to Fourier Transform == Let <math>s(t)</math> be a continuous function in the time domain. We begin with a common definition of the continuous [[Fourier transform]], where <math>f</math> represents frequency in hertz and <math>t</math> represents time in seconds: :<math>S(f) \triangleq \int_{-\infty}^\infty s(t)\cdot e^{-i 2\pi ft} dt.</math> We can reduce the integral into a summation by sampling <math>s(t)</math> at intervals of <math>T</math> seconds (see {{slink|Fourier_transform|Numerical_integration_of_a_series_of_ordered_pairs}}). Specifically, we can replace <math>s(t)</math> with a discrete sequence of its samples, <math>s(nT)</math>, for integer values of <math>n</math>, and replace the differential element <math>dt</math> with the sampling period <math>T</math>. Thus, we obtain one formulation for the discrete-time Fourier transform (DTFT): :<math>S_{1/T}(f) \triangleq \sum_{n=-\infty}^{\infty} \underbrace{T\cdot s(nT)}_{s[n]}\ e^{-i 2\pi f T n}.</math> This [[Fourier series#Definition|Fourier series]] (in frequency) is a continuous periodic function, whose periodicity is the sampling frequency <math>1/T</math>. The subscript <math>1/T</math> distinguishes it from the continuous Fourier transform <math>S(f)</math>, and from the angular frequency form of the DTFT. The latter is obtained by defining an angular frequency variable, <math>\omega \triangleq 2 \pi f T</math> (which has [[Normalized frequency (digital signal processing)|normalized units]] of ''radians/sample''), giving us a periodic function of angular frequency, with periodicity <math>2\pi</math>:{{efn-la |Oppenheim and Schafer,<ref name=Oppenheim/> p 147 (4.17), where: <math>x[n] \triangleq s(nT) = \tfrac{1}{T}s[n],</math> therefore <math>X(e^{i\omega}) \triangleq \tfrac{1}{T}S_{2\pi}(\omega).</math> }} {{Equation box 1 |indent=: |cellpadding= 0 |border= 0 |background colour=white |equation={{NumBlk||<math> S_{2\pi}(\omega) = S_{1/T}\left(\tfrac{\omega}{2\pi T}\right) = \sum_{n=-\infty}^{\infty} s[n] \cdot e^{-i \omega n}. </math> |{{EquationRef|Eq.1}}}} }} [[File:Fourier transform, Fourier series, DTFT, DFT.svg|thumb|500px|Fig 1. Depiction of a Fourier transform (upper left) and its periodic summation (DTFT) in the lower left corner. The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT).]] The utility of the DTFT is rooted in the [[Poisson summation formula]], which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform''':'''{{efn-la |Oppenheim and Schafer,<ref name=Oppenheim/> p 147 (4.20), p 694 (10.1), and Prandoni and Vetterli,<ref name=Prandoni/> p 255, (9.33), where: <math>\omega \triangleq 2\pi f T,</math> and <math>X_c(i 2\pi f) \triangleq S(f).</math> }}{{Equation box 1|border|title=Poisson summation|indent=:|border colour=#0073CF|background colour=#F5FFFA|cellpadding=6|equation={{NumBlk||<math> S_{1/T}(f) = \sum_{n=-\infty}^{\infty} s[n]\cdot e^{-i 2\pi f T n}\; = \sum_{k=-\infty}^{\infty} S\left(f - k/T\right). </math> |{{EquationRef|Eq.2}}}}}} The components of the periodic summation are centered at integer values (denoted by <math>k</math>) of a [[Normalized frequency (signal processing)|normalized frequency]] (cycles per sample). Ordinary/physical frequency (cycles per second) is the product of <math>k</math> and the sample-rate, <math>f_s=1/T.</math> For sufficiently large <math>f_s,</math> the <math>k=0</math> term can be observed in the region <math>[-f_s/2, f_s/2]</math> with little or no distortion ([[aliasing]]) from the other terms. '''Fig.1''' depicts an example where <math>1/T</math> is not large enough to prevent aliasing. We also note that <math>e^{-i2\pi fTn}</math> is the Fourier transform of <math>\delta(t-nT).</math> Therefore, an alternative definition of DTFT is''':'''{{efn-ua |In fact {{EquationNote|Eq.2}} is often justified as follows''':'''<ref name=Oppenheim/>{{rp|p.143, eq 4.6}} <math display="block">\begin{align} \mathcal{F}\left \{\sum_{n=-\infty}^{\infty} T\cdot s(nT) \cdot \delta(t-nT)\right \} &=\mathcal{F}\left \{s(t)\cdot T \sum_{n=-\infty}^{\infty} \delta(t-nT)\right \}\\ &= S(f) * \mathcal{F}\left \{T \sum_{n=-\infty}^{\infty} \delta(t-nT)\right \} \\ &= S(f) * \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T}\right) \\ &= \sum_{k=-\infty}^{\infty} S\left(f - \frac{k}{T}\right). \end{align}</math> }} {{Equation box 1 |indent=: |cellpadding= 0 |border= 0 |background colour=white |equation={{NumBlk||<math> S_{1/T}(f) = \mathcal{F}\left \{\sum_{n=-\infty}^{\infty} s[n] \cdot \delta(t-nT)\right \}. </math> |{{EquationRef|Eq.3}}}} }} The modulated [[Dirac comb]] function is a mathematical abstraction sometimes referred to as ''impulse sampling''.<ref name=Rao/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)