Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == Let <math>G</math> be any group. Denote its [[group operation]] by multiplication and its [[identity element]] by <math>1</math>. Let <math>b</math> be any element of <math>G</math>. For any positive integer <math>k</math>, the expression <math>b^k</math> denotes the product of <math>b</math> with itself <math>k</math> times:<ref name=":0">{{Cite book |author-last1=Lam |url=https://link.springer.com/book/10.1007/978-3-0348-8295-8 |title=Cryptography and Computational Number Theory |author-last2=Shparlinski |author-last3=Wang |author-last4=Xing |editor-first1=Kwok-Yan |editor-first2=Igor |editor-first3=Huaxiong |editor-first4=Chaoping |editor-last1=Lam |editor-last2=Shparlinski |editor-last3=Wang |editor-last4=Xing |publisher=[[Birkhäuser Basel]] |isbn=978-3-7643-6510-3 |edition=1 |series=Progress in Computer Science and Applied Logic |date=2001 |pages=54–56 |language=en |doi=10.1007/978-3-0348-8295-8 |eissn=2297-0584 |issn=2297-0576}}</ref> :<math>b^k = \underbrace{b \cdot b \cdot \ldots \cdot b}_{k \; \text{factors}}.</math> Similarly, let <math>b^{-k}</math> denote the product of <math>b^{-1}</math> with itself <math>k</math> times. For <math>k=0</math>, the <math>k</math><sup>th</sup> power is the identity: <math>b^0=1</math>. Let <math>a</math> also be an element of <math>G</math>. An integer <math>k</math> that solves the equation <math>b^k=a</math> is termed a '''discrete logarithm''' (or simply '''logarithm''', in this context) of <math>a</math> to the base <math>b</math>. One writes <math>k=\log_b a</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)