Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dissipative system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Overview == A [[Dissipation|dissipative]] structure is characterized by the spontaneous appearance of symmetry breaking ([[anisotropy]]) and the formation of complex, sometimes [[Chaos theory|chaotic]], structures where interacting particles exhibit long range correlations. Examples in everyday life include [[convection]], [[turbulence|turbulent flow]], [[cyclone]]s, [[Tropical cyclone|hurricane]]s and [[life|living organisms]]. Less common examples include [[laser]]s, [[Bénard cells]], [[droplet cluster]], and the [[Belousov–Zhabotinsky reaction]].<ref>{{cite journal|last1=Li|first1=HP|title=Dissipative Belousov–Zhabotinsky reaction in unstable micropyretic synthesis|journal=Current Opinion in Chemical Engineering|date=February 2014|volume=3|pages=1–6|doi=10.1016/j.coche.2013.08.007|bibcode=2014COCE....3....1L }}</ref> One way of mathematically modeling a dissipative system is given in the article on ''[[wandering set]]s'': it involves the action of a [[group (mathematics)|group]] on a [[measure (mathematics)|measurable set]]. Dissipative systems can also be used as a tool to study economic systems and [[complex systems]].<ref>{{Cite book|title = The Unity of Science and Economics: A New Foundation of Economic Theory|last = Chen|first = Jing|publisher = Springer|year = 2015|url=https://www.springer.com/us/book/9781493934645}}</ref> For example, a dissipative system involving [[self-assembly]] of nanowires has been used as a model to understand the relationship between entropy generation and the robustness of biological systems.<ref>{{cite journal|last1=Hubler|first1=Alfred|last2=Belkin|first2=Andrey|last3=Bezryadin|first3=Alexey|title=Noise induced phase transition between maximum entropy production structures and minimum entropy production structures?|journal=Complexity|date=2 January 2015|volume=20|issue=3|pages=8–11|doi=10.1002/cplx.21639|bibcode=2015Cmplx..20c...8H}}</ref> The [[Hopf decomposition]] states that [[dynamical system]]s can be decomposed into a conservative and a dissipative part; more precisely, it states that every [[measure space]] with a [[conservative system|non-singular transformation]] can be decomposed into an invariant [[conservative system|conservative set]] and an invariant dissipative set.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)