Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dual-coding theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Types of codes== '''Analogue codes''' are used to mentally represent images. Analogue codes retain the main perceptual features of whatever is being represented, so the images we form in our minds are highly similar to the physical stimuli. They are a near-exact representation of the physical stimuli we observe in our environment, such as trees and rivers.<ref name="Sternberg-2016" /> '''Symbolic codes''' are used to form mental representations of words. They represent something conceptually, and sometimes, arbitrarily, as opposed to perceptually. Similar to the way a watch may represent information in the form of numbers to display the time, symbolic codes represent information in our mind in the form of arbitrary symbols, like words and combinations of words, to represent several ideas. Each symbol (x, y, 1, 2, etc.) can arbitrarily represent something other than itself. For instance, the letter x is often used to represent more than just the concept of an x, the 24th letter of the alphabet. It can be used to represent a variable x in mathematics, or a multiplication symbol in an equation. Concepts like multiplication can be represented symbolically by an "x" because we arbitrarily assign it a deeper concept. Only when we use it to represent this deeper concept does the letter "x" carry this type of meaning.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)