Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dynamical friction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Intuitive account== An intuition for the effect can be obtained by thinking of a massive object moving through a cloud of smaller lighter bodies. The effect of gravity causes the light bodies to accelerate and gain momentum and kinetic energy (see [[slingshot effect]]). By conservation of energy and momentum, we may conclude that the heavier body will be slowed by an amount to compensate. Since there is a loss of momentum and kinetic energy for the body under consideration, the effect is called ''dynamical friction''. Another equivalent way of thinking about this process is that as a large object moves through a cloud of smaller objects, the gravitational effect of the larger object pulls the smaller objects towards it. There then exists a concentration of smaller objects behind the larger body (a ''gravitational wake''), as it has already moved past its previous position. This concentration of small objects behind the larger body exerts a collective gravitational force on the large object, slowing it down. Of course, the mechanism works the same for all masses of interacting bodies and for any relative velocities between them. However, while the most probable outcome for an object moving through a cloud is a loss of momentum and energy, as described intuitively above, in the general case it might be either loss or gain. When the body under consideration is gaining momentum and energy the same physical mechanism is called [[slingshot effect]], or ''gravity assist''. This technique is sometimes used by interplanetary probes to obtain a boost in velocity by passing close by a planet.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)