Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Eilenberg–MacLane space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * The [[unit circle]] <math>S^1</math> is a <math>K(\Z,1)</math>. * The infinite-dimensional [[complex projective space]] <math>\mathbb{CP}^{\infty}</math> is a model of <math>K(\Z,2)</math>. * The infinite-dimensional [[real projective space]] <math>\mathbb{RP}^{\infty}</math> is a <math>K(\Z/2,1)</math>. * The [[wedge sum]] of ''k'' [[unit circle]]s <math>\textstyle\bigvee_{i=1}^k S^1</math> is a <math>K(F_k,1)</math>, where <math>F_k</math> is the [[free group]] on ''k'' generators. * The complement to any connected [[Knot theory|knot]] or graph in a 3-dimensional sphere <math>S^3</math> is of type <math>K(G,1)</math>; this is called the "[[Aspherical space|asphericity]] of knots", and is a 1957 theorem of [[Christos Papakyriakopoulos]].<ref>{{cite journal |last1=Papakyriakopoulos |first1=C. D. |title=On Dehn's lemma and the asphericity of knots |journal=Proceedings of the National Academy of Sciences |date=15 January 1957 |volume=43 |issue=1 |pages=169–172 |doi=10.1073/pnas.43.1.169 |pmid=16589993 |pmc=528404 |bibcode=1957PNAS...43..169P |doi-access=free }}</ref> * Any [[compact space|compact]], connected, [[non-positive curvature|non-positively curved]] [[manifold]] ''M'' is a <math>K(\Gamma,1)</math>, where <math>\Gamma=\pi_1(M)</math> is the [[fundamental group]] of ''M''. This is a consequence of the [[Cartan–Hadamard theorem]]. * An infinite [[lens space]] <math> L(\infty, q)</math> given by the quotient of <math>S^\infty</math> by the free action <math> (z \mapsto e^{2\pi i m/q}z) </math> for <math> m \in \Z/q </math> is a <math>K(\mathbb{Z}/q,1)</math>. This can be shown using [[Covering space#Deck transformation|covering space theory]] and the fact that the infinite dimensional sphere is [[Contractible space|contractible]].<ref>{{Cite web|title=general topology - Unit sphere in $\mathbb{R}^\infty$ is contractible?|url=https://math.stackexchange.com/q/282268 |access-date=2020-09-01|website=Mathematics Stack Exchange}}</ref> Note this includes <math>\mathbb{RP}^{\infty}</math> as a <math>K(\Z/2,1)</math>. * The [[Configuration space (mathematics)|configuration space]] of <math>n</math> points in the plane is a <math>K(P_n,1)</math>, where <math>P_n</math> is the [[Braid_group#Relation_with_symmetric_group_and_the_pure_braid_group|pure braid group]] on <math>n</math> strands. * Correspondingly, the [[Configuration space (mathematics)| {{var|n}}th unordered configuration space]] of <math> \mathbb{R}^2 </math> is a <math>K(B_n,1)</math>, where <math>B_n</math> denotes the [[Braid group |{{var|n}}-strand braid group]]. <ref>Lucas Williams [https://arxiv.org/pdf/1911.11186.pdf "Configuration spaces for the working undergraduate"], ''arXiv'', November 5, 2019. Retrieved 2021-06-14</ref> * The [[Symmetric product (topology) |infinite symmetric product]] <math> SP(S^n)</math> of a [[Sphere|''n''-sphere]] is a <math>K(\mathbb{Z},n)</math>. More generally <math> SP(M(G,n)) </math> is a <math> K(G,n) </math> for all [[Moore space (algebraic topology) | Moore spaces]] <math> M(G,n) </math>. Some further elementary examples can be constructed from these by using the fact that the product <math>K(G,n) \times K(H,n)</math> is <math>K(G\times H,n)</math>. For instance the [[Torus#n-dimensional_torus| {{var|n}}-dimensional Torus]] <math>\mathbb{T}^n</math> is a <math> K(\Z^n, 1)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)