Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Einstein–Hilbert action
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Discussion == Deriving equations of motion from an action has several advantages. First, it allows for easy unification of general relativity with other classical field theories (such as [[Maxwell theory]]), which are also formulated in terms of an action. In the process, the derivation identifies a natural candidate for the source term coupling the metric to matter fields. Moreover, symmetries of the action allow for easy identification of conserved quantities through [[Noether's theorem]]. In general relativity, the action is usually assumed to be a [[functional (mathematics)|functional]] of the metric (and matter fields), and the [[connection (mathematics)|connection]] is given by the [[Levi-Civita connection]]. The [[Palatini action|Palatini formulation]] of general relativity assumes the metric and connection to be independent, and varies with respect to both independently, which makes it possible to include fermionic matter fields with non-integer spin. The Einstein equations in the presence of matter are given by adding the matter action to the Einstein–Hilbert action.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)