Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Electrical engineering
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== {{Main|History of electrical engineering}} Electricity has been a subject of scientific interest since at least the early 17th century. [[William Gilbert (astronomer)|William Gilbert]] was a prominent early electrical scientist, and was the first to draw a clear distinction between [[magnetism]] and [[static electricity]]. He is credited with establishing the term "electricity".{{sfn|Martinsen|Grimnes|2011|p=411}} He also designed the [[versorium]]: a device that detects the presence of statically charged objects. In 1762 Swedish professor [[Johan Wilcke]] invented a device later named [[electrophorus]] that produced a static electric charge.<ref>{{Cite web |title=The Voltaic Pile {{!}} Distinctive Collections Spotlights |url=https://libraries.mit.edu/collections/vail-collection/topics/electricity/the-voltaic-pile/ |access-date=2022-12-16 |website=libraries.mit.edu |language=en-US}}</ref> By 1800 [[Alessandro Volta]] had developed the [[voltaic pile]], a forerunner of the electric battery. ===19th century=== [[File:Faraday Cochran Pickersgill.jpg|thumb|upright|The discoveries of [[Michael Faraday]] formed the foundation of electric motor technology.]] In the 19th century, research into the subject started to intensify. Notable developments in this century include the work of [[Hans Christian Ørsted]], who discovered in 1820 that an electric current produces a magnetic field that will deflect a compass needle; of [[William Sturgeon]], who in 1825 invented the [[electromagnet]]; of [[Joseph Henry]] and [[Edward Davy]], who invented the [[electrical relay]] in 1835; of [[Georg Ohm]], who in 1827 quantified the relationship between the [[electric current]] and [[potential difference]] in a [[Electrical conductor|conductor]]; of [[Michael Faraday]], the discoverer of [[electromagnetic induction]] in 1831; and of [[James Clerk Maxwell]], who in 1873 published a unified [[Maxwell's equations|theory]] of electricity and [[magnetism]] in his treatise ''Electricity and Magnetism''.{{sfn|Lambourne|2010|p=11}} In 1782, [[Georges-Louis Le Sage]] developed and presented in [[Berlin]] probably the world's first form of [[Electrical telegraph|electric telegraphy]], using 24 different wires, one for each letter of the alphabet. This telegraph connected two rooms. It was an electrostatic telegraph that moved gold leaf through electrical conduction. In 1795, [[Francisco Salva Campillo]] proposed an electrostatic telegraph system. Between 1803 and 1804, he worked on electrical telegraphy, and in 1804, he presented his report at the Royal Academy of Natural Sciences and Arts of Barcelona. Salva's electrolyte telegraph system was very innovative though it was greatly influenced by and based upon two discoveries made in Europe in 1800—Alessandro Volta's electric battery for generating an electric current and William Nicholson and Anthony Carlyle's electrolysis of water.<ref>{{Cite web |date=25 January 2016 |title=Francesc Salvà i Campillo : Biography |url=https://ethw.org/Francesc_Salv%C3%A0_i_Campillo |access-date=25 March 2019 |website=ethw.org |language=en-US}}</ref> [[Electrical telegraph]]y may be considered the first example of electrical engineering.<ref>{{cite web | url = https://distantwriting.co.uk/introduction.html | title = Distant Writing: A History of the Telegraph Companies in Britain between 1838 and 1868: 2. Introduction | last = Roberts | first = Steven | quote = Using these discoveries a number of inventors or rather ‘adapters’ appeared, taking this new knowledge, transforming it into useful ideas with commercial utility; the first of these ‘products’ was the use of electricity to transmit information between distant points, the electric telegraph. }}</ref> Electrical engineering became a profession in the later 19th century. Practitioners had created a global [[electric telegraph]] network, and the first professional electrical engineering institutions were founded in the UK and the US to support the new discipline. [[Francis Ronalds]] created an electric telegraph system in 1816 and documented his vision of how the world could be transformed by electricity.<ref>{{Cite book|title=Sir Francis Ronalds: Father of the Electric Telegraph|last=Ronalds|first=B.F.|publisher=Imperial College Press|year=2016|isbn=978-1-78326-917-4|location=London}}</ref><ref>{{Cite journal|last=Ronalds|first=B.F.|date=2016|title=Sir Francis Ronalds and the Electric Telegraph|journal=International Journal for the History of Engineering & Technology|volume=86|pages=42–55|doi=10.1080/17581206.2015.1119481|s2cid=113256632}}</ref> Over 50 years later, he joined the new Society of Telegraph Engineers (soon to be renamed the [[Institution of Electrical Engineers]]) where he was regarded by other members as the first of their cohort.<ref>{{Cite journal|last=Ronalds|first=B.F.|date=July 2016|title=Francis Ronalds (1788–1873): The First Electrical Engineer?|journal=Proceedings of the IEEE|volume=104|issue=7|pages=1489–1498|doi=10.1109/JPROC.2016.2571358|s2cid=20662894}}</ref> By the end of the 19th century, the world had been forever changed by the rapid communication made possible by the engineering development of land-lines, [[submarine communications cable|submarine cable]]s, and, from about 1890, [[wireless telegraphy]]. Practical applications and advances in such fields created an increasing need for standardized [[units of measure]]. They led to the international standardization of the units [[volt]], [[ampere]], [[coulomb]], [[ohm]], [[farad]], and [[henry (unit)|henry]]. This was achieved at an international conference in [[Chicago]] in 1893.{{Sfn|Rosenberg|2008|p=9}} The publication of these standards formed the basis of future advances in standardization in various industries, and in many countries, the definitions were immediately recognized in relevant legislation.{{sfn|Tunbridge|1992}} During these years, the study of electricity was largely considered to be a subfield of [[physics]] since early electrical technology was considered [[electromechanical]] in nature. The [[Technische Universität Darmstadt]] founded the world's first department of electrical engineering in 1882 and introduced the first-degree course in electrical engineering in 1883.<ref>{{Cite web|url=https://www.etit.tu-darmstadt.de/fachbereich/profil/historie/index.en.jsp|title=Historie|last=Darmstadt|first=Technische Universität|website=Technische Universität Darmstadt|language=en|access-date=12 October 2019}}</ref> The first electrical engineering degree program in the United States was started at [[Massachusetts Institute of Technology]] (MIT) in the physics department under Professor Charles Cross,{{Sfn|Wildes|Lindgren|1985|p=19}} though it was [[Cornell University]] to produce the world's first electrical engineering graduates in 1885.<ref>{{cite web | title=History|publisher=School of Electrical and Computer Engineering, Cornell| date=Spring 1994| orig-date=Later updated|url=http://www.ece.cornell.edu/ece/about/history.cfm | archive-url=https://web.archive.org/web/20130606163120/http://www.ece.cornell.edu/ece/about/history.cfm | archive-date=6 June 2013 | url-status=dead}}</ref> The first course in electrical engineering was taught in 1883 in Cornell's [[Sibley College of Mechanical Engineering and Mechanic Arts]].<ref>{{Cite book |url=https://www.engineering.cornell.edu/about/upload/Cornell-Engineering-history.pdf |title=A tradition of leadership and innovation: a history of Cornell Engineering|year=2009|archive-date=3 March 2016| publication-place=Ithaca, NY | isbn=978-0-918531-05-6 | oclc=455196772 |archive-url=https://web.archive.org/web/20160303165241/http://www.engineering.cornell.edu/about/upload/Cornell-Engineering-history.pdf |url-status=dead |last1=Roger Segelken |first1=H. }}</ref> In about 1885, Cornell President [[Andrew Dickson White]] established the first Department of Electrical Engineering in the United States.<ref>{{Cite web|url=http://president.cornell.edu/andrew-dickson-white/|title=Andrew Dickson White | Office of the President|website=president.cornell.edu}}</ref> In the same year, [[University College London]] founded the first chair of electrical engineering in Great Britain.<ref>{{cite book|title=The Electrical Engineer|url=https://books.google.com/books?id=TLLmAAAAMAAJ|year=1911|page=54}}</ref> Professor Mendell P. Weinbach at [[University of Missouri]] established the electrical engineering department in 1886.<ref>{{cite web|url=http://engineering.missouri.edu/ece/about/department-history/|title=Department History – Electrical & Computer Engineering|access-date=5 November 2015|archive-url=https://web.archive.org/web/20151117054305/http://engineering.missouri.edu/ece/about/department-history/|archive-date=17 November 2015|url-status=dead}}</ref> Afterwards, universities and [[institutes of technology]] gradually started to offer electrical engineering programs to their students all over the world. During these decades the use of electrical engineering increased dramatically. In 1882, [[Thomas Edison]] switched on the world's first large-scale electric power network that provided 110 volts—[[direct current]] (DC)—to 59 customers on [[Manhattan Island]] in New York City. In 1884, [[Sir Charles Parsons]] invented the [[steam turbine]] allowing for more efficient electric power generation. [[Alternating current]], with its ability to transmit power more efficiently over long distances via the use of [[transformer]]s, developed rapidly in the 1880s and 1890s with transformer designs by [[Károly Zipernowsky]], [[Ottó Bláthy]] and [[Miksa Déri]] (later called ZBD transformers), [[Lucien Gaulard]], [[John Dixon Gibbs]] and [[William Stanley Jr.]] Practical [[AC motor]] designs including [[induction motor]]s were independently invented by [[Galileo Ferraris]] and [[Nikola Tesla]] and further developed into a practical [[three-phase]] form by [[Mikhail Dolivo-Dobrovolsky]] and [[Charles Eugene Lancelot Brown]].{{Sfn|Heertje|Perlman|1990|p=138}} [[Charles Steinmetz]] and [[Oliver Heaviside]] contributed to the theoretical basis of alternating current engineering.<ref>{{cite book|url=https://books.google.com/books?id=f5FqsDPVQ2MC&q=theoretical%20%20alternating%20current%20%20Oliver%20Heaviside&pg=PA1229|title=Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences|first=I.|last=Grattan-Guinness|date=1 January 2003|publisher=JHU Press|via=Google Books|isbn=9780801873973}}</ref><ref>{{cite book|url=https://books.google.com/books?id=lew5IC5piCwC&q=theoretical%20%20alternating%20current%20%20Charles%20Steinmetz&pg=PA329|title=Mathematics in Historical Context|first=Jeff|last=Suzuki|date=27 August 2009|publisher=MAA|via=Google Books|isbn=9780883855706}}</ref> The spread in the use of AC set off in the United States what has been called the ''[[war of the currents]]'' between a [[George Westinghouse]] backed AC system and a Thomas Edison backed DC power system, with AC being adopted as the overall standard.{{sfn|Severs|Leise|2011|p=145}} ===Early 20th century=== [[File:Guglielmo Marconi.jpg|upright|thumb|[[Guglielmo Marconi]], known for his pioneering work on long-distance [[radio transmission]]]] During the [[invention of radio|development of radio]], many scientists and inventors contributed to [[radio communications|radio technology]] and electronics. The mathematical work of [[James Clerk Maxwell]] during the 1850s had shown the relationship of different forms of [[electromagnetic radiation]] including the possibility of invisible airborne waves (later called "radio waves"). In his classic physics experiments of 1888, [[Heinrich Hertz]] proved Maxwell's theory by transmitting [[radio wave]]s with a [[spark-gap transmitter]], and detected them by using simple electrical devices. Other physicists experimented with these new waves and in the process developed devices for transmitting and detecting them. In 1895, [[Guglielmo Marconi]] began work on a way to adapt the known methods of transmitting and detecting these "Hertzian waves" into a purpose-built commercial [[Wireless telegraphy|wireless telegraphic]] system. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by the curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, [[Cornwall]], and St. John's, [[Newfoundland]], a distance of {{convert|2100|mi|km}}.<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/1909/marconi-bio.html Marconi's biography at Nobelprize.org] retrieved 21 June 2008.</ref> [[Millimetre wave]] communication was first investigated by [[Jagadish Chandra Bose]] during 1894{{ndash}}1896, when he reached an [[extremely high frequency]] of up to 60{{nbsp}}[[GHz]] in his experiments.<ref>{{cite web |title=Milestones: First Millimeter-wave Communication Experiments by J.C. Bose, 1894–96 |url=https://ethw.org/Milestones:First_Millimeter-wave_Communication_Experiments_by_J.C._Bose,_1894-96 |website=[[List of IEEE milestones]] |publisher=[[Institute of Electrical and Electronics Engineers]] |access-date=1 October 2019}}</ref> He also introduced the use of [[semiconductor]] junctions to detect radio waves,<ref name=emerson>{{cite book | last = Emerson | first = D. T. | title = 1997 IEEE MTT-S International Microwave Symposium Digest | chapter = The work of Jagadis Chandra Bose: 100 years of mm-wave research | publisher = IEEE Transactions on Microwave Theory and Research | volume = 45 | issue = 12 | pages = 2267–2273 | year = 1997 | chapter-url = https://books.google.com/books?id=09Zsv97IH1MC&pg=PA88 | doi = 10.1109/MWSYM.1997.602853 | isbn = 9780986488511|bibcode = 1997imsd.conf..553E | citeseerx = 10.1.1.39.8748 | s2cid = 9039614 }} reprinted in Igor Grigorov, Ed., ''[https://books.google.com/books?id=09Zsv97IH1MC Antentop]'', Vol. 2, No.3, pp. 87–96.</ref> when he patented the radio [[crystal detector]] in 1901.<ref name="computerhistory-timeline">{{cite web |title=Timeline |url=https://www.computerhistory.org/siliconengine/timeline/ |website=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=22 August 2019}}</ref><ref name="computerhistory-1901">{{cite web |title=1901: Semiconductor Rectifiers Patented as "Cat's Whisker" Detectors |url=https://www.computerhistory.org/siliconengine/semiconductor-rectifiers-patented-as-cats-whisker-detectors/ |website=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=23 August 2019}}</ref> In 1897, [[Karl Ferdinand Braun]] introduced the [[cathode-ray tube]] as part of an [[oscilloscope]], a crucial enabling technology for [[television|electronic television]].{{sfn|Abramson|1955|p=22}} [[John Ambrose Fleming|John Fleming]] invented the first radio tube, the [[diode]], in 1904. Two years later, [[Robert von Lieben]] and [[Lee De Forest]] independently developed the amplifier tube, called the [[triode]].{{Sfn|Huurdeman|2003|p=226}} In 1920, [[Albert Hull]] developed the [[magnetron]] which would eventually lead to the development of the [[microwave oven]] in 1946 by [[Percy Spencer]].<ref>{{cite web | title = Albert W. Hull (1880–1966) | work = IEEE History Center | url = http://www.ieee.org/organizations/history_center/legacies/hull.html | archive-url = https://web.archive.org/web/20020602014513/http://www.ieee.org/organizations/history_center/legacies/hull.html | url-status = dead | archive-date = 2 June 2002 | access-date = 22 January 2006 }}</ref><ref>{{cite web | title = Who Invented Microwaves? | url = http://www.gallawa.com/microtech/history.html | access-date =22 January 2006 }}</ref> In 1934, the [[British military]] began to make strides toward [[radar]] (which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at [[Bawdsey]] in August 1936.<ref>{{cite web | title = Early Radar History | work = Peneley Radar Archives | url = http://www.penleyradararchives.org.uk/history/introduction.htm | access-date =22 January 2006 }}</ref> In 1941, [[Konrad Zuse]] presented the [[Z3 (computer)|Z3]], the world's first fully functional and programmable computer using electromechanical parts. In 1943, [[Tommy Flowers]] designed and built the [[Colossus (computer)|Colossus]], the world's first fully functional, electronic, digital and programmable computer.<ref>{{cite encyclopedia |first=Raúl |last=Rojas |contribution=The history of Konrad Zuse's early computing machines |page=237 |editor1-first=Raúl |editor1-last=Rojas |editor2-first=Ulf |editor2-last=Hashagen |title=The First Computers—History and Architectures History of Computing |publisher=MIT Press |year=2002 |isbn=978-0-262-68137-7}}</ref><ref>{{cite encyclopedia |first=Anthony E. |last=Sale |contribution=The Colossus of Bletchley Park |pages=354–355 |editor1-first=Raúl |editor1-last=Rojas |editor2-first=Ulf |editor2-last=Hashagen |title=The First Computers—History and Architectures History of Computing |publisher=MIT Press |year=2002 |isbn=978-0-262-68137-7}}</ref> In 1946, the [[ENIAC]] (Electronic Numerical Integrator and Computer) of [[John Presper Eckert]] and [[John Mauchly]] followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives.<ref>{{cite web | title = The ENIAC Museum Online | url = http://www.seas.upenn.edu/~museum/guys.html | access-date =18 January 2006 }}</ref> In 1948, [[Claude Shannon]] published "A Mathematical Theory of Communication" which mathematically describes the passage of information with uncertainty ([[electrical noise]]). ===Solid-state electronics === {{See also|History of electronic engineering|History of the transistor|Invention of the integrated circuit|MOSFET|Solid-state electronics}} [[File:Replica-of-first-transistor.jpg|thumb|A replica of the first working [[transistor]], a [[point-contact transistor]]]] [[File:MOSFET Structure.png|thumb|[[Metal–oxide–semiconductor field-effect transistor]] (MOSFET), the basic building block of modern [[electronics]]]] The first working [[transistor]] was a [[point-contact transistor]] invented by [[John Bardeen]] and [[Walter Houser Brattain]] while working under [[William Shockley]] at the [[Bell Telephone Laboratories]] (BTL) in 1947.<ref>{{cite web |title=1947: Invention of the Point-Contact Transistor |url=https://www.computerhistory.org/siliconengine/invention-of-the-point-contact-transistor/ |website=[[Computer History Museum]] |access-date=10 August 2019}}</ref> They then invented the [[bipolar junction transistor]] in 1948.<ref>{{cite web |title=1948: Conception of the Junction Transistor |url=https://www.computerhistory.org/siliconengine/conception-of-the-junction-transistor/ |website=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=8 October 2019}}</ref> While early [[junction transistor]]s were relatively bulky devices that were difficult to manufacture on a [[mass-production]] basis,<ref name="Moskowitz">{{cite book |last1=Moskowitz |first1=Sanford L. |title=Advanced Materials Innovation: Managing Global Technology in the 21st century |date=2016 |publisher=[[John Wiley & Sons]] |isbn=9780470508923 |page=168 |url=https://books.google.com/books?id=2STRDAAAQBAJ&pg=PA168}}</ref> they opened the door for more compact devices.<ref>{{cite web | title = Electronics Timeline | work = Greatest Engineering Achievements of the Twentieth Century | url = http://www.greatachievements.org/?id=3956 | access-date =18 January 2006 }}</ref> The first [[integrated circuit]]s were the [[hybrid integrated circuit]] invented by [[Jack Kilby]] at [[Texas Instruments]] in 1958 and the monolithic integrated circuit chip invented by [[Robert Noyce]] at [[Fairchild Semiconductor]] in 1959.<ref name="Saxena140">{{cite book |last1=Saxena |first1=Arjun N. |title=Invention of Integrated Circuits: Untold Important Facts |date=2009 |publisher=[[World Scientific]] |isbn=9789812814456 |page=140 |url=https://books.google.com/books?id=-3lpDQAAQBAJ&pg=PA140}}</ref> The [[MOSFET]] (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by [[Mohamed Atalla]] and [[Dawon Kahng]] at BTL in 1959.<ref name="computerhistory">{{cite journal|url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/|title=1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated|journal=The Silicon Engine|publisher=[[Computer History Museum]]}}</ref><ref name="computerhistory-transistor">{{cite web |title=Who Invented the Transistor? |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 |access-date=20 July 2019}}</ref><ref name="triumph">{{cite web |title=Triumph of the MOS Transistor |url=https://www.youtube.com/watch?v=q6fBEjf9WPw | archive-url=https://ghostarchive.org/varchive/youtube/20211028/q6fBEjf9WPw| archive-date=2021-10-28|website=YouTube |publisher=[[Computer History Museum]] |access-date=21 July 2019 |date=6 August 2010}}{{cbignore}}</ref> It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.<ref name="Moskowitz"/> It revolutionized the [[electronics industry]],<ref name="Chan">{{cite book |last1=Chan |first1=Yi-Jen |title=Studies of InAIAs/InGaAs and GaInP/GaAs heterostructure FET's for high speed applications |date=1992 |publisher=[[University of Michigan]] |url=https://books.google.com/books?id=sV4eAQAAMAAJ |page=1 |quote=The Si MOSFET has revolutionized the electronics industry and as a result impacts our daily lives in almost every conceivable way.}}</ref><ref name="Grant">{{cite book |last1=Grant |first1=Duncan Andrew |last2=Gowar |first2=John |title=Power MOSFETS: theory and applications |date=1989 |publisher=[[Wiley (publisher)|Wiley]] |isbn=9780471828679 |page=1 |url=https://books.google.com/books?id=ZiZTAAAAMAAJ |quote=The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers.}}</ref> becoming the most widely used electronic device in the world.<ref name="computerhistory-transistor"/><ref name="Golio">{{cite book |last1=Golio |first1=Mike |last2=Golio |first2=Janet |title=RF and Microwave Passive and Active Technologies |date=2018 |publisher=[[CRC Press]] |isbn=9781420006728 |pages=18–2 |url=https://books.google.com/books?id=MCj9jxSVQKIC&pg=SA18-PA2}}</ref><ref name="computerhistory2018">{{cite web |title=13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History |url=https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/ |date=2 April 2018 |website=[[Computer History Museum]] |access-date=28 July 2019}}</ref> The MOSFET made it possible to build [[very large-scale integration|high-density integrated circuit]] chips.<ref name="computerhistory-transistor"/> The earliest experimental MOS IC chip to be fabricated was built by Fred Heiman and Steven Hofstein at [[RCA Laboratories]] in 1962.<ref name="computerhistory-digital">{{cite web |title=Tortoise of Transistors Wins the Race – CHM Revolution |url=https://www.computerhistory.org/revolution/digital-logic/12/279 |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> MOS technology enabled [[Moore's law]], the [[transistor count|doubling of transistor]]s on an IC chip every two years, predicted by [[Gordon Moore]] in 1965.<ref>{{cite book |last1=Franco |first1=Jacopo |last2=Kaczer |first2=Ben |last3=Groeseneken |first3=Guido |title=Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications |date=2013 |publisher=Springer Science & Business Media |isbn=9789400776630 |pages=1–2 |url=https://books.google.com/books?id=PnrGBAAAQBAJ&pg=PA1}}</ref> [[Silicon-gate]] MOS technology was developed by [[Federico Faggin]] at Fairchild in 1968.<ref>{{cite web |title=1968: Silicon Gate Technology Developed for ICs |url=https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/ |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref> Since then, the MOSFET has been the basic building block of modern electronics.<ref name="triumph"/><ref>{{cite book |last1=McCluskey |first1=Matthew D. |last2=Haller |first2=Eugene E. |title=Dopants and Defects in Semiconductors |date=2012 |publisher=[[CRC Press]] |isbn=9781439831533 |page=3 |url=https://books.google.com/books?id=fV3RBQAAQBAJ&pg=PA3}}</ref><ref name="nytimes.com">{{cite web|last1=Daniels|first1=Lee A.|date=28 May 1992|title=Dr. Dawon Kahng, 61, Inventor in Field of Solid-State Electronics|url=https://www.nytimes.com/1992/05/28/nyregion/dr-dawon-kahng-61-inventor-in-field-of-solid-state-electronics.html|access-date=1 April 2017|website=The New York Times}}</ref> The mass-production of silicon MOSFETs and MOS integrated circuit chips, along with continuous [[MOSFET scaling]] miniaturization at an exponential pace (as predicted by [[Moore's law]]), has since led to revolutionary changes in technology, economy, culture and thinking.<ref name="Feldman">{{cite book |last1=Feldman |first1=Leonard C. |author1-link=Leonard Feldman |chapter=Introduction |title=Fundamental Aspects of Silicon Oxidation |date=2001 |publisher=[[Springer Science & Business Media]] |isbn=9783540416821 |pages=1–11 |chapter-url=https://books.google.com/books?id=sV4y2-mWGNIC&pg=PA1}}</ref> The [[Apollo program]] which culminated in [[Moon landing|landing astronauts on the Moon]] with [[Apollo 11]] in 1969 was enabled by [[NASA]]'s adoption of advances in [[semiconductor]] [[electronic technology]], including MOSFETs in the [[Interplanetary Monitoring Platform]] (IMP)<ref>{{cite book |title=Interplanetary Monitoring Platform |date=29 August 1989 |publisher=[[NASA]] |pages=1, 11, 134 |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf |access-date=12 August 2019|last1=Butler |first1=P. M. }}</ref><ref>{{cite journal |last1=White |first1=H. D. |last2=Lokerson |first2=D. C. |title=The Evolution of IMP Spacecraft Mosfet Data Systems |journal=[[IEEE Transactions on Nuclear Science]] |date=1971 |volume=18 |issue=1 |pages=233–236 |doi=10.1109/TNS.1971.4325871 |bibcode=1971ITNS...18..233W |issn=0018-9499}}</ref> and silicon integrated circuit chips in the [[Apollo Guidance Computer]] (AGC).<ref>{{cite web |title=Apollo Guidance Computer and the First Silicon Chips |url=https://airandspace.si.edu/stories/editorial/apollo-guidance-computer-and-first-silicon-chips |website=[[National Air and Space Museum]] |publisher=[[Smithsonian Institution]] |access-date=1 September 2019 |date=14 October 2015}}</ref> The development of MOS integrated circuit technology in the 1960s led to the invention of the [[microprocessor]] in the early 1970s.<ref name="computerhistory1971">{{cite web |title=1971: Microprocessor Integrates CPU Function onto a Single Chip |url=https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/ |website=[[Computer History Museum]] |access-date=22 July 2019}}</ref><ref name="Colinge2016">{{cite book|last1=Colinge|first1=Jean-Pierre|url=https://books.google.com/books?id=FvjUCwAAQBAJ&pg=PA2|title=Nanowire Transistors: Physics of Devices and Materials in One Dimension|last2=Greer|first2=James C.|date=2016|publisher=[[Cambridge University Press]]|isbn=9781107052406|page=2}}</ref> The first single-chip microprocessor was the [[Intel 4004]], released in 1971.<ref name="computerhistory1971"/> The Intel 4004 was designed and realized by Federico Faggin at Intel with his silicon-gate MOS technology,<ref name="computerhistory1971"/> along with Intel's [[Marcian Hoff]] and [[Stanley Mazor]] and Busicom's Masatoshi Shima.<ref name="ieee">{{cite journal|doi=10.1109/MSSC.2008.930938|title = The Making of the First Microprocessor|year = 2009|last1 = Faggin|first1 = Federico|journal = IEEE Solid-State Circuits Magazine|volume = 1|pages = 8–21|s2cid = 46218043|doi-access = }}</ref> The microprocessor led to the development of [[microcomputer]]s and personal computers, and the [[microcomputer revolution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)