Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Electromagnetic four-potential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == The contravariant '''electromagnetic four-potential''' can be defined as:<ref name=Griffiths>{{cite book|title=Introduction to Electrodynamics|edition=3rd|author=D.J. Griffiths|publisher=Pearson Education, Dorling Kindersley|year=2007|isbn=978-81-7758-293-2}}</ref> : {| class="wikitable" |- ! SI units ! Gaussian units |- | <math>A^\alpha = \left( \frac{1}{c}\phi, \mathbf{A} \right)\,\!</math> || <math>A^\alpha = (\phi, \mathbf{A})</math> |} in which ''Ο'' is the [[electric potential]], and '''A''' is the [[magnetic vector potential|magnetic potential]] (a [[vector potential]]). The unit of ''A<sup>Ξ±</sup>'' is [[volt|V]]Β·[[second|s]]Β·[[metre|m]]<sup>β1</sup> in SI, and [[maxwell (unit)|Mx]]Β·[[centimeter|cm]]<sup>β1</sup> in [[Gaussian units|Gaussian-CGS]]. The electric and magnetic fields associated with these four-potentials are:<ref name=grant /> : {| class="wikitable" |- ! SI units ! Gaussian units |- | <math>\mathbf{E} = -\mathbf{\nabla} \phi - \frac{\partial \mathbf{A}}{\partial t}</math> || <math>\mathbf{E} = -\mathbf{\nabla} \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} </math> |- | <math>\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} </math> || <math>\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} </math> |} In [[special relativity]], the electric and magnetic fields transform under [[Lorentz transformations]]. This can be written in the form of a rank two [[tensor]] β the [[electromagnetic tensor]]. The 16 contravariant components of the electromagnetic tensor, using [[Minkowski metric]] convention {{nowrap|(+ β β β)}}, are written in terms of the electromagnetic four-potential and the [[four-gradient]] as: : <math>F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{bmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{bmatrix} </math> If the said signature is instead {{nowrap|(β + + +)}} then: :<math>F'\,^{\mu\nu} = \partial'\,^{\mu}A^{\nu} - \partial'\,^{\nu}A^{\mu} = \begin{bmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{bmatrix} </math> This essentially defines the four-potential in terms of physically observable quantities, as well as reducing to the above definition.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)