Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Excimer laser
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Terminology and history == [[File:Electra Laser Generates 90K Shots.webm|thumb|alt=The Electra KrF laser demonstrates 90,000 shots over 10 hours|The Electra KrF laser demonstrates 90,000 shots over 10 hours]] The term [[excimer]] is short for 'excited [[dimer (chemistry)|dimer]]', while 'exciplex' is short for 'excited [[complex (chemistry)|complex]]'. Most excimer lasers are of the noble gas halide type, for which the term ''excimer'' is, strictly speaking, a misnomer. (Although less commonly used, the proper term for such is an '''exciplex laser'''.) Excimer laser was proposed in 1960 by [[Fritz Houtermans]].<ref>{{cite journal | author=F.G. Houtermans | title=Über Massen-Wirkung im optischen Spektralgebiet un die Möglichkeit absolut negativer Absorption für einige Fälle von Molekülspektren (Licht-Lawine) | year=1960 | journal=[[Helvetica Physica Acta]]| volume=33 | page=939}}</ref> The excimer laser development started with the observation of a nascent spectral line narrowing at 176 [[Nanometre|nm]] reported in 1971<ref>{{Cite journal|last1=Basov|first1=N G|last2=Danilychev|first2=V A|last3=Popov|first3=Yurii M|date=1971-01-31|title=Stimulated emission in the vacuum ultraviolet region|url=http://dx.doi.org/10.1070/qe1971v001n01abeh003011|journal=Soviet Journal of Quantum Electronics|volume=1|issue=1|pages=18–22|doi=10.1070/qe1971v001n01abeh003011|bibcode=1971QuEle...1...18B|issn=0049-1748|url-access=subscription}}</ref> by [[Nikolai Basov]], V. A. Danilychev and Yu. M. Popov, at the [[Lebedev Physical Institute]] in [[Moscow]], using liquid [[xenon]] [[Dimer (chemistry)|dimer]] (Xe<sub>2</sub>) excited by an [[electron]] beam. Spurred by this report, H.A. Koehler et al. presented a better substantiation of stimulated emission in 1972,<ref>{{Cite journal|last1=Koehler|first1=H.A.|last2=Ferderber|first2=L.J.|last3=Redhead|first3=D.L.|last4=Ebert|first4=P.J.|date=September 1972|title=Stimulated VUV emission in high-pressure xenon excited by high-current relativistic electron beams|url=http://dx.doi.org/10.1063/1.1654342|journal=Applied Physics Letters|volume=21|issue=5|pages=198–200|doi=10.1063/1.1654342|bibcode=1972ApPhL..21..198K|issn=0003-6951|url-access=subscription}}</ref> using high pressure xenon gas. Definitive evidence of a xenon excimer laser action at 173 nm using a high pressure gas at 12 atmospheres, also pumped by an electron beam, was first presented in March 1973, by [[Mani Lal Bhaumik]] of Northrop Corporation, Los Angeles. Strong stimulated emission was observed as the laser's spectral line narrowed from a continuum of 15 nm to just 0.25 nm, and the intensity increased a thousand-fold. The laser's estimated output of 1 joule was high enough to evaporate part of the mirror coatings, which imprinted its mode pattern. This presentation established the credible potential of developing high power lasers at short wavelengths.<ref>{{Cite journal|last1=Ault|first1=E.|last2=Bhaumik|first2=M.|last3=Hughes|first3=W.|last4=Jensen|first4=R.|last5=Robinson|first5=C.|last6=Kolb|first6=A.|last7=Shannon|first7=J.|date=March 1973|title=Xe Laser Operation at 1730 Ǻ|url=https://doi.org/10.1364/JOSA.63.000907|journal=Journal of the Optical Society of America|volume=63|issue=7|pages=907|doi=10.1364/JOSA.63.000907|issn=|url-access=subscription}}</ref><ref>{{Cite journal|date=May 1973|title=The News in Focus|url=|journal=Laser Focus|volume=9|issue=5|pages=10–14}}</ref><ref>{{Cite journal|last1=Ault|first1=E.|last2=Bhaumik|first2=M.|last3=Hughes|first3=W.|last4=Jensen|first4=R.|last5=Robinson|first5=C.|last6=Kolb|first6=A.|last7=Shannon|first7=J.|date=March 1973|title=Xenon molecular laser in the vacuum ultraviolet|url=http://dx.doi.org/10.1109/jqe.1973.1077396|journal=IEEE Journal of Quantum Electronics|volume=9|issue=10|pages=1031–1032|doi=10.1109/jqe.1973.1077396|bibcode=1973IJQE....9.1031A|issn=0018-9197|url-access=subscription}}</ref> A later improvement was the use of [[noble gas]] [[halogen|halides]] (originally [[xenon|Xe]] [[bromine|Br]]) developed by many groups in 1975.<ref>{{cite book | doi=10.1117/12.456812 | chapter=History and future prospects of excimer lasers | title=Second International Symposium on Laser Precision Microfabrication | date=2002 | last1=Basting | first1=Dirk | last2=Pippert | first2=Klaus D. | last3=Stamm | first3=Uwe | volume=4426 | page=25 | editor-first1=Isamu | editor-first2=Yong Feng | editor-first3=Koji | editor-first4=Jan J. | editor-last1=Miyamoto | editor-last2=Lu | editor-last3=Sugioka | editor-last4=Dubowski }}</ref> These groups include the Avco Everett Research Laboratory,<ref>{{cite journal | doi=10.1063/1.88473 | title=Laser action on the <sup>2</sup>Σ<sup>+</sup><sub>1/2</sub>→<sup>2</sup>Σ<sup>+</sup><sub>1/2</sub> bands of KRF and XeCl | date=1975 | last1=Ewing | first1=J. J. | last2=Brau | first2=C. A. | journal=Applied Physics Letters | volume=27 | issue=6 | pages=350–352 | bibcode=1975ApPhL..27..350E }}</ref> Sandia Laboratories,<ref>{{cite journal | doi=10.1016/0030-4018(75)90281-3 | title=100 MW, 248.4 nm, KRF laser excited by an electron beam | date=1975 | last1=Tisone | first1=G.C. | last2=Hays | first2=A.K. | last3=Hoffman | first3=J.M. | journal=Optics Communications | volume=15 | issue=2 | pages=188–189 | bibcode=1975OptCo..15..188T }}</ref> the [[Northrop Grumman|Northrop Research and Technology Center]],<ref>{{cite journal | doi=10.1063/1.88496 | title=High-power xenon fluoride laser | date=1975 | last1=Ault | first1=E. R. | last2=Bradford | first2=R. S. | last3=Bhaumik | first3=M. L. | journal=Applied Physics Letters | volume=27 | issue=7 | pages=413–415 | bibcode=1975ApPhL..27..413A }}</ref> the United States Government's [[Naval Research Laboratory]],<ref>{{cite journal | doi=10.1063/1.88409 | title=Stimulated emission at 281.8 nm from XeBr | date=1975 | last1=Searles | first1=S. K. | last2=Hart | first2=G. A. | journal=Applied Physics Letters | volume=27 | issue=4 | pages=243–245 | bibcode=1975ApPhL..27..243S }}</ref> which also developed a XeCl Laser<ref>{{cite journal | doi=10.1063/1.95617 | title=High efficiency microwave discharge XeCl laser | date=1985 | last1=Christensen | first1=C. P. | last2=Waynant | first2=R. W. | last3=Feldman | first3=B. J. | journal=Applied Physics Letters | volume=46 | issue=4 | pages=321–323 | bibcode=1985ApPhL..46..321C }}</ref> that was excited using a microwave discharge,<ref>Microwave discharge resulted in much smaller footprint, very high pulse repetition rate excimer laser, commercialized under U. S. Patent 4,796,271 by Potomac Photonics, Inc,</ref> and Los Alamos National Laboratory.<ref>{{cite thesis |last=Butcher |first=Rober R. |year=1975 |title=A Comprehensive Study of Excimer Lasers, Robert R. Butcher |type=MSc Thesis |publisher=University of New Mexico |url=https://digitalrepository.unm.edu/ece_etds/544/}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)