Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algebraic statement== Here is a purely [[algebra]]ic statement, as a first introduction to the combinatorial use of the formula. For any [[formal power series]] of the form <math display="block">f(x)=a_1 x+{a_2 \over 2}x^2+{a_3 \over 6}x^3+\cdots+{a_n \over n!}x^n+\cdots\,</math> we have <math display="block">\exp f(x)=e^{f(x)}=\sum_{n=0}^\infty {b_n \over n!}x^n,\,</math> where <math display="block">b_n = \sum_{\pi=\left\{\,S_1,\,\dots,\,S_k\,\right\}} a_{\left|S_1\right|}\cdots a_{\left|S_k\right|},</math> and the index <math>\pi</math> runs through all [[partition of a set|partitions]] <math>\{ S_1,\ldots,S_k \}</math> of the set <math>\{ 1,\ldots, n \}</math>. (When <math>k = 0,</math> the product is [[empty product|empty]] and by definition equals <math>1</math>.) ===Formula in other expressions=== One can write the formula in the following form: <math display="block">b_n = B_n(a_1,a_2,\dots,a_n),</math> and thus <math display="block">\exp\left(\sum_{n=1}^\infty {a_n \over n!} x^n \right) = \sum_{n=0}^\infty {B_n(a_1,\dots,a_n) \over n!} x^n,</math> where <math>B_n(a_1,\ldots,a_n)</math> is the <math>n</math>th complete [[Bell polynomial]]. Alternatively, the exponential formula can also be written using the [[cycle index]] of the [[symmetric group]], as follows:<math display="block">\exp\left(\sum_{n=1}^\infty a_n {x^n \over n} \right) = \sum_{n=0}^\infty Z_n(a_1,\dots,a_n) x^n,</math>where <math>Z_n</math> stands for the cycle index polynomial for the symmetric group <math>S_n</math>, defined as:<math display="block">Z_n (x_1,\cdots ,x_n) = \frac 1{n!} \sum_{\sigma\in S_n} x_1^{\sigma_1}\cdots x_n^{\sigma_n}</math>and <math>\sigma_j</math> denotes the number of cycles of <math>\sigma</math> of size <math>j\in \{ 1, \cdots, n \}</math>. This is a consequence of the general relation between <math>Z_n</math> and [[Bell polynomials]]:<math display="block">Z_n(x_1,\dots,x_n) = {1 \over n!} B_n(0!\,x_1, 1!\,x_2, \dots, (n-1)!\,x_n).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)