Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fermat's little theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == [[File:Pierre de Fermat.jpg|thumb|upright=0.75|right|Pierre de Fermat]] Pierre de Fermat first stated the theorem in a letter dated October 18, 1640, to his friend and confidant [[Frénicle de Bessy]]. His formulation is equivalent to the following:<ref name=Burton /> <blockquote>If {{mvar|p}} is a prime and {{mvar|a}} is any integer not divisible by {{mvar|p}}, then {{math|''a''<sup> ''p'' − 1</sup> − 1}} is divisible by {{mvar|p}}. </blockquote> Fermat's original statement was <blockquote>{{lang|fr|Tout nombre premier mesure infailliblement une des puissances <math>-1</math> de quelque progression que ce soit, et l'exposant de la dite puissance est sous-multiple du nombre premier donné <math>-1</math>; et, après qu'on a trouvé la première puissance qui satisfait à la question, toutes celles dont les exposants sont multiples de l'exposant de la première satisfont tout de même à la question.}} </blockquote> This may be translated, with explanations and formulas added in brackets for easier understanding, as: <blockquote> Every prime number [{{mvar|p}}] divides necessarily one of the powers minus one of any [geometric] [[geometric progression|progression]] [{{math|''a'', ''a''<sup>2</sup>, ''a''<sup>3</sup>, …}}] [that is, there exists {{mvar|t}} such that {{mvar|p}} divides {{math|''a<sup>t</sup>'' − 1}}], and the exponent of this power [{{mvar|t}}] divides the given prime minus one [divides {{math|''p'' − 1}}]. After one has found the first power [{{mvar|t}}] that satisfies the question, all those whose exponents are multiples of the exponent of the first one satisfy similarly the question [that is, all multiples of the first {{mvar|t}} have the same property]. </blockquote> Fermat did not consider the case where {{mvar|a}} is a multiple of {{mvar|p}} nor prove his assertion, only stating:<ref>{{citation|first=Pierre|last=Fermat|title=Oeuvres de Fermat. Tome 2: Correspondance|editor-last1=Tannery|editor-first1=P.|editor-last2=Henry|editor-first2=C.|year=1894|place=Paris|publisher=Gauthier-Villars|url=https://archive.org/stream/oeuvresdefermat02ferm#page/206/mode/2up|pages=206–212}} (in French)</ref> <blockquote>{{lang|fr|Et cette proposition est généralement vraie en toutes progressions et en tous nombres premiers; de quoi je vous envoierois la démonstration, si je n'appréhendois d'être trop long.}}</blockquote> <blockquote>(And this proposition is generally true for all series [''sic''] and for all prime numbers; I would send you a demonstration of it, if I did not fear going on for too long.)<ref>{{harvnb|Mahoney|1994|page=295}} for the English translation</ref></blockquote> [[Euler]] provided the first published proof in 1736, in a paper titled "Theorematum Quorundam ad Numeros Primos Spectantium Demonstratio" (in English: "Demonstration of Certain Theorems Concerning Prime Numbers") in the ''Proceedings'' of the St. Petersburg Academy,<ref>{{cite journal |last1=Euler |first1=Leonhard |title=Theorematum quorundam ad numeros primos spectantium demonstratio |journal=Commentarii Academiae Scientiarum Imperialis Petropolitanae (Memoirs of the Imperial Academy of Sciences in St. Petersburg)|date=1736 |volume=8 |pages=141–146 |url=https://www.biodiversitylibrary.org/item/38573#page/167/mode/1up |trans-title=Proof of certain theorems relating to prime numbers |language=Latin}}</ref><ref>{{harvnb|Ore|1988|page=273}}</ref> but [[Gottfried Leibniz|Leibniz]] had given virtually the same proof in an unpublished manuscript from sometime before 1683.<ref name=Burton /> The term "Fermat's little theorem" was probably first used in print in 1913 in ''Zahlentheorie'' by [[Kurt Hensel]]:<ref>{{cite book |last1=Hensel |first1=Kurt |title=Zahlentheorie |trans-title=Number Theory |date=1913 |publisher=G. J. Göschen |location=Berlin and Leipzig, Germany |page=103 |url=https://books.google.com/books?id=SbhUAAAAYAAJ&pg=PA103 |language=German}}</ref> <blockquote>{{lang|de|Für jede endliche Gruppe besteht nun ein Fundamentalsatz, welcher der kleine Fermatsche Satz genannt zu werden pflegt, weil ein ganz spezieller Teil desselben zuerst von Fermat bewiesen worden ist.}}</blockquote> <blockquote>(There is a fundamental theorem holding in every finite group, usually called Fermat's little theorem because Fermat was the first to have proved a very special part of it.)</blockquote> An early use in English occurs in [[Abraham Adrian Albert|A.A. Albert]]'s ''Modern Higher Algebra'' (1937), which refers to "the so-called 'little' Fermat theorem" on page 206.<ref>{{Harvnb|Albert|2015|p=206}}</ref> === Further history === {{main|Chinese hypothesis}} Some mathematicians independently made the related hypothesis (sometimes incorrectly called the Chinese hypothesis) that {{math|2<sup>''p''</sup> ≡ 2 (mod ''p'')}} if and only if {{mvar|p}} is prime. Indeed, the "if" part is true, and it is a special case of Fermat's little theorem. However, the "only if" part is false: For example, {{math|2<sup>341</sup> ≡ 2 (mod 341)}}, but 341 = 11 × 31 is a [[pseudoprime]] to base 2. See [[#Pseudoprimes|below]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)