Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feynman slash notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Identities== Using the [[anticommutator]]s of the gamma matrices, one can show that for any <math>a_\mu</math> and <math>b_\mu</math>, :<math>\begin{align} {a\!\!\!/}{a\!\!\!/} = a^\mu a_\mu \cdot I_4 = a^2 \cdot I_4 \\ {a\!\!\!/}{b\!\!\!/} + {b\!\!\!/}{a\!\!\!/} = 2 a \cdot b \cdot I_4. \end{align}</math> where <math>I_4</math> is the identity matrix in four dimensions. In particular, :<math>{\partial\!\!\!/}^2 = \partial^2 \cdot I_4.</math> Further identities can be read off directly from the [[Gamma matrices#Identities|gamma matrix identities]] by replacing the [[metric tensor]] with [[inner product]]s. For example, :<math>\begin{align} \gamma_\mu {a\!\!\!/} \gamma^\mu &= -2 {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} \gamma^\mu &= 4 a \cdot b \cdot I_4 \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/} \gamma^\mu &= -2 {c\!\!\!/}{b\!\!\!/} {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/}{d\!\!\!/} \gamma^\mu &= 2( {d\!\!\!/} {a\!\!\!/} {b\!\!\!/}{c\!\!\!/}+{c\!\!\!/} {b\!\!\!/} {a\!\!\!/}{d\!\!\!/}) \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}) &= 4 a \cdot b \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 \left[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c) \right] \\ \operatorname{tr}({a\!\!\!/}{\gamma^\mu}{b\!\!\!/}{\gamma^\nu }) &= 4 \left[a^\mu b^\nu + a^\nu b^\mu - \eta^{\mu \nu}(a \cdot b) \right] \\ \operatorname{tr}(\gamma_5 {a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 i \varepsilon_{\mu \nu \lambda \sigma} a^\mu b^\nu c^\lambda d^\sigma \\ \operatorname{tr}({\gamma^\mu}{a\!\!\!/}{\gamma^\nu}) &= 0 \\ \operatorname{tr}({\gamma^5}{a\!\!\!/}{b\!\!\!/}) &= 0 \\ \operatorname{tr}({\gamma^0}({a\!\!\!/}+m){\gamma^0}({b\!\!\!/}+m)) &= 8a^0b^0-4(a \cdot b)+4m^2 \\ \operatorname{tr}(({a\!\!\!/}+m){\gamma^\mu}({b\!\!\!/}+m){\gamma^\nu}) &= 4 \left[a^\mu b^\nu+a^\nu b^\mu - \eta^{\mu \nu}((a \cdot b)-m^2) \right] \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n}) &= \operatorname{tr}({a\!\!\!/}_{2n}...{a\!\!\!/}_1) \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n+1}) &= 0 \end{align}</math> where: *<math>\varepsilon_{\mu \nu \lambda \sigma}</math> is the [[Levi-Civita symbol]] *<math>\eta^{\mu \nu}</math> is the [[Minkowski metric]] *<math>m</math> is a scalar.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)