Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Field of sets
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions == A field of sets is a pair <math>( X, \mathcal{F} )</math> consisting of a [[Set (mathematics)|set]] <math>X</math> and a [[Family of sets|family]] <math>\mathcal{F}</math> of [[subset]]s of <math>X,</math> called an '''algebra over <math>X,</math>''' that has the following properties: <ol> <li>{{em|Closed under [[Complement (set theory)|complementation]] in <math>X</math>}}: <math display="block">X \setminus F \in \mathcal{F} \text{ for all } F \in \mathcal{F}.</math></li> <li>{{em|Contains the [[empty set]] (or contains <math>X</math>)}} as an element: <math>\varnothing \in \mathcal{F}.</math> * Assuming that (1) holds, this condition (2) is equivalent to: <math>X \in \mathcal{F}.</math> </li> <li>Any/all of the following equivalent<ref group=note>The listed statements are equivalent if (1) and (2) hold. The equivalence of statements (a) and (b) follows from [[De Morgan's laws]]. This is also true of the equivalence of statements (c) and (d).</ref> conditions hold: <ol style="list-style-type: lower-latin;"> <li>{{em|Closed under binary [[Union (set theory)|unions]]}}: <math display="block">F \cup G \in \mathcal{F} \text{ for all } F, G \in \mathcal{F}.</math></li> <li>{{em|Closed under binary [[Intersection (set theory)|intersections]]}}: <math display="block">F \cap G \in \mathcal{F} \text{ for all } F, G \in \mathcal{F}.</math></li> <li>{{em|Closed under finite unions}}: <math display="block">F_1 \cup \cdots \cup F_n \in \mathcal{F} \text{ for all integers } n \geq 1 \text{ and all } F_1, \ldots, F_n \in \mathcal{F}.</math></li> <li>{{em|Closed under finite intersections}}: <math display="block">F_1 \cap \cdots \cap F_n \in \mathcal{F} \text{ for all integers } n \geq 1 \text{ and all } F_1, \ldots, F_n \in \mathcal{F}.</math></li> </ol> </li> </ol> In other words, <math>\mathcal{F}</math> forms a [[subalgebra]] of the power set [[Boolean algebra (structure)|Boolean algebra]] of <math>X </math> (with the same identity element <math>X \in \mathcal{F}</math>). Many authors refer to <math>\mathcal{F}</math> itself as a field of sets. Elements of <math>X</math> are called '''points''' while elements of <math>\mathcal{F}</math> are called '''complexes''' and are said to be the '''admissible sets''' of <math>X.</math> A field of sets <math>( X, \mathcal{F} )</math> is called a '''Ο-field of sets''' and the algebra <math>\mathcal{F}</math> is called a '''[[Ο-algebra]]''' if the following additional condition (4) is satisfied: <ol start=4> <li>Any/both of the following equivalent conditions hold: <ol style="list-style-type: lower-latin;"> <li>{{em|Closed under [[Countable set|countable]] unions}}: <math display="block">\bigcup_{i=1}^{\infty} F_i := F_1 \cup F_2 \cup \cdots \in \mathcal{F}</math> for all <math>F_1, F_2, \ldots \in \mathcal{F}.</math></li> <li>{{em|Closed under countable intersections}}: <math display="block">\bigcap_{i=1}^{\infty} F_i := F_1 \cap F_2 \cap \cdots \in \mathcal{F}</math> for all <math>F_1, F_2, \ldots \in \mathcal{F}.</math></li> </ol> </li> </ol>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)