Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Force
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Development of the concept== Philosophers in [[Classical antiquity|antiquity]] used the concept of force in the study of [[statics|stationary]] and [[dynamics (physics)|moving]] objects and [[simple machine]]s, but thinkers such as [[Aristotle]] and [[Archimedes]] retained fundamental errors in understanding force. In part, this was due to an incomplete understanding of the sometimes non-obvious force of [[friction]] and a consequently inadequate view of the nature of natural motion.<ref name="Archimedes">{{cite book |last=Heath |first=Thomas L. |author-link=Thomas Heath (classicist) |url=https://archive.org/details/worksofarchimede029517mbp |title=The Works of Archimedes |via=[[Internet Archive]] |access-date=2007-10-14 |year=1897 |publisher=Cambridge University Press. }}</ref> A fundamental error was the belief that a force is required to maintain motion, even at a constant velocity. Most of the previous misunderstandings about motion and force were eventually corrected by [[Galileo Galilei]] and [[Sir Isaac Newton]]. With his mathematical insight, Newton formulated [[Newton's laws of motion|laws of motion]] that were not improved for over two hundred years.<ref name=uniphysics_ch2/> By the early 20th century, [[Albert Einstein|Einstein]] developed a [[theory of relativity]] that correctly predicted the action of forces on objects with increasing momenta near the speed of light and also provided insight into the forces produced by gravitation and [[inertia]]. With modern insights into [[quantum mechanics]] and technology that can accelerate particles close to the speed of light, [[particle physics]] has devised a [[Standard Model]] to describe forces between particles smaller than atoms. The [[Standard Model]] predicts that exchanged particles called [[gauge boson]]s are the fundamental means by which forces are emitted and absorbed. Only four main interactions are known: in order of decreasing strength, they are: [[strong force|strong]], [[electromagnetic force|electromagnetic]], [[weak force|weak]], and [[gravitational force|gravitational]].<ref name=FeynmanVol1>{{cite book |last1=Feynman |first1=Richard P. |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |title=The Feynman lectures on physics. Vol. I: Mainly mechanics, radiation and heat|year=2010|publisher=Basic Books|location=New York|isbn=978-0465024933|edition=New millennium |title-link=The Feynman Lectures on Physics |author-link1=Richard Feynman |author-link2=Robert B. Leighton |author-link3=Matthew Sands}}</ref>{{rp|((2β10))}}<ref name=Kleppner />{{rp|79}} [[High energy physics|High-energy particle physics]] [[observation]]s made during the 1970s and 1980s confirmed that the weak and electromagnetic forces are expressions of a more fundamental [[electroweak]] interaction.<ref name="final theory"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)