Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statement== In this section we assume that <math>f</math> is an integrable continuous function. Use the [[Fourier transform#convention|convention for the Fourier transform]] that :<math>(\mathcal{F}f)(\xi):=\int_{\mathbb{R}} e^{-2\pi iy\cdot\xi} \, f(y)\,dy.</math> Furthermore, we assume that the Fourier transform is also integrable. ===Inverse Fourier transform as an integral=== The most common statement of the Fourier inversion theorem is to state the inverse transform as an integral. For any integrable function <math>g</math> and all <math>x \in \mathbb R</math> set :<math>\mathcal{F}^{-1}g(x):=\int_{\mathbb{R}} e^{2\pi ix\cdot\xi} \, g(\xi)\,d\xi.</math> Then for all <math>x \in \mathbb R</math> we have :<math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=f(x).</math> {{collapse top|title=Proof}} Given <math>f(y)</math> and <math>\mathcal{F}f (\xi) = \int_{\mathbb{R}^n} e^{-2\pi i y\cdot\xi} f(y)\,dy</math>, the proof uses the following facts: # If <math>x \in \mathbb R^n</math> and <math>g(\xi) = e^{2 \pi \mathrm{i}x \cdot \xi} \psi(\xi)</math>, then <math display="block">(\mathcal{F}g)(y) = (\mathcal{F}\psi)(y - x).</math> # If <math>\varepsilon \in \mathbb R</math> and <math>\psi(\xi) = \varphi(\varepsilon\xi)</math>, then <math display="block">(\mathcal{F}\psi)(y) = (\mathcal{F}\varphi)(y/\varepsilon)/|\varepsilon|^n.</math> # For <math>f, g \in L^1(\mathbb R^n)</math>, [[Fubini's theorem]] implies <math display="block">\textstyle\int g(\xi) \cdot (\mathcal{F}f)(\xi)\,d\xi = \int(\mathcal{F}g)(y) \cdot f(y)\,dy.</math> # Define <math>\varphi(\xi) = e^{-\pi \vert \xi \vert^2}</math> such that <math display="block">(\mathcal{F}\varphi)(y) = \varphi(y).</math> # Define <math>\varphi_\varepsilon(y) = \varphi(y/\varepsilon)/\varepsilon^n</math>; an [[nascent delta function|approximation to the identity]]. That is, <math display="block">\lim_{\varepsilon \to 0} (\varphi_\varepsilon \ast f)(x) = f(x),</math> converges pointwise for any continuous <math>f \in L^1(\mathbb R^n)</math> and point <math>x \in \mathbb R^n</math>. Since, by assumption, <math>\mathcal{F}f\in L^1(\mathbb{R}^n)</math>, it follows by the [[dominated convergence theorem]] that <math display="block">\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \lim_{\varepsilon \to 0}\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi.</math> Define <math display="block">g_x(\xi) = e^{-\pi\varepsilon^2\vert \xi \vert^2 + 2 \pi \mathrm{i} x \cdot \xi}.</math> Applying facts 1, 2 and 4, repeatedly for multiple integrals if necessary, we obtain <math display="block">(\mathcal{F}g_x)(y) = \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2}=\varphi_\varepsilon(x-y).</math> Using fact 3 on <math>f</math> and <math>g_x</math>, for each <math>x\in\mathbb R^n</math>, we have <math display="block">\int_{\mathbb{R}^n} e^{-\pi\varepsilon^2|\xi|^2 + 2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = \int_{\mathbb{R}^n} \frac{1}{\varepsilon^n}e^{-\frac{\pi}{\varepsilon^2}|x - y|^2} f(y)\,dy = (\varphi_\varepsilon * f)(x),</math> the [[convolution]] of <math>f</math> with an approximate identity. But since <math>f \in L^1(\mathbb R^n)</math>, fact 5 says that <math display="block">\lim_{\varepsilon\to 0}(\varphi_{\varepsilon} * f) (x) = f(x).</math> Putting together the above we have shown that <math display="block">\int_{\mathbb{R}^n} e^{2\pi i x\cdot\xi}(\mathcal{F}f)(\xi)\,d\xi = f(x). \qquad\square</math> {{collapse bottom}} ===Fourier integral theorem=== The theorem can be restated as :<math>f(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} e^{2\pi i(x-y)\cdot\xi} \, f(y)\,dy\,d\xi.</math> By taking the real part<ref>[[without loss of generality|w.l.o.g]] {{math|''f''}} is real valued, as any complex-valued function can be split into its real and imaginary parts and every operator appearing here is linear in {{math|''f''}}.</ref> of each side of the above we obtain :<math>f(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \cos (2\pi (x-y)\cdot\xi) \, f(y)\,dy\,d\xi.</math> ===Inverse transform in terms of flip operator=== For any function <math>g</math> define the flip operator<ref>An [[operator (mathematics)|operator]] is a transformation that maps functions to functions. The flip operator, the Fourier transform, the inverse Fourier transform and the identity transform are all examples of operators.</ref> <math>R</math> by :<math>Rg(x):=g(-x).</math> Then we may instead define :<math>\mathcal{F}^{-1}f := R\mathcal{F}f = \mathcal{F}Rf.</math> It is immediate from the definition of the Fourier transform and the flip operator that both <math>R\mathcal{F}f</math> and <math>\mathcal{F}Rf</math> match the integral definition of <math>\mathcal{F}^{-1}f</math>, and in particular are equal to each other and satisfy <math>\mathcal{F}^{-1}(\mathcal{F}f)(x)=f(x)</math>. Since <math>Rf=R\mathcal{F}^{-1}\mathcal{F}f =RR \mathcal{FF}f</math> we have <math>R=\mathcal{F}^2</math> and :<math>\mathcal{F}^{-1}=\mathcal{F}^3.</math> ===Two-sided inverse=== The form of the Fourier inversion theorem stated above, as is common, is that :<math>\mathcal{F}^{-1}(\mathcal{F}f)(x) = f(x).</math> In other words, <math>\mathcal{F}^{-1}</math> is a left inverse for the Fourier transform. However it is also a right inverse for the Fourier transform i.e. :<math>\mathcal{F}(\mathcal{F}^{-1}f)(\xi) = f(\xi).</math> Since <math>\mathcal{F}^{-1}</math> is so similar to <math>\mathcal{F}</math>, this follows very easily from the Fourier inversion theorem (changing variables <math>\zeta := -\xi</math>): :<math>\begin{align} f & =\mathcal{F}^{-1}(\mathcal{F}f)(x)\\[6pt] & =\int_{\mathbb{R}}\int_{\mathbb{R}}e^{2\pi ix\cdot\xi}\,e^{-2\pi iy\cdot\xi}\, f(y)\, dy\, d\xi\\[6pt] & =\int_{\mathbb{R}}\int_{\mathbb{R}}e^{-2\pi ix\cdot\zeta}\,e^{2\pi iy\cdot\zeta}\, f(y)\, dy\, d\zeta\\[6pt] & =\mathcal{F}(\mathcal{F}^{-1}f)(x). \end{align}</math> Alternatively, this can be seen from the relation between <math>\mathcal{F}^{-1}f</math> and the flip operator and the [[associativity]] of [[function composition]], since :<math>f = \mathcal{F}^{-1}(\mathcal{F}f) = \mathcal{F}R\mathcal{F}f = \mathcal{F} (\mathcal{F}^{-1}f).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)