Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fractional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Historical notes == In [[applied mathematics]] and mathematical analysis, a '''fractional derivative''' is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written to [[Guillaume de l'Hôpital]] by [[Gottfried Wilhelm Leibniz]] in 1695.<ref name=Derivative>{{cite journal |last=Katugampola |first=Udita N. |date=15 October 2014 |title=A New Approach To Generalized Fractional Derivatives |url=https://www.emis.de/journals/BMAA/repository/docs/BMAA6-4-1.pdf |journal=Bulletin of Mathematical Analysis and Applications |volume=6 |issue=4 |pages=1–15 |arxiv=1106.0965 }}</ref> Around the same time, Leibniz wrote to [[Johann Bernoulli]] about derivatives of "general order".<ref name=":1">{{Cite book |last=Miller |first=Kenneth S. |title=An Introduction to the Fractional Calculus and Fractional Differential Equations |last2=Ross |first2=Bertram |date=1993 |publisher=Wiley |isbn=978-0-471-58884-9 |location=New York |pages=1–2}}</ref> In the correspondence between Leibniz and [[John Wallis]] in 1697, Wallis's infinite product for <math>\pi/2</math> is discussed. Leibniz suggested using differential calculus to achieve this result. Leibniz further used the notation <math>{d}^{1/2}{y}</math> to denote the derivative of order {{sfrac|1|2}}.<ref name=":1" /> Fractional calculus was introduced in one of [[Niels Henrik Abel]]'s early papers<ref>{{cite journal |title=Oplösning af et Par Opgaver ved Hjelp af bestemte Integraler (Solution de quelques problèmes à l'aide d'intégrales définies, Solution of a couple of problems by means of definite integrals) |year=1823 |journal=Magazin for Naturvidenskaberne |place=Kristiania (Oslo) |pages=55–68 |author=Niels Henrik Abel |url=https://abelprize.no/sites/default/files/2021-04/Magazin_for_Naturvidenskaberne_oplosning_av_et_par1_opt.pdf}}</ref> where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized operation, and the unified notation for differentiation and integration of arbitrary real order.<ref>{{cite journal |doi=10.1515/fca-2017-0057 |title=Niels Henrik Abel and the birth of fractional calculus |year=2017 |journal=Fractional Calculus and Applied Analysis |pages=1068–1075 |last1=Podlubny |first1=Igor |last2=Magin |first2=Richard L. |last3=Trymorush |first3=Irina |volume=20 |issue=5 |arxiv=1802.05441 |s2cid=119664694}}</ref> Independently, the foundations of the subject were laid by [[Liouville]] in a paper from 1832.<ref>{{Citation |last=Liouville |first=Joseph |author-link=Joseph Liouville |year=1832 |title=Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions |journal=Journal de l'École Polytechnique |volume=13 |pages=1–69 |location=Paris |url=https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f2.item.r=Joseph%20Liouville}}.</ref><ref>{{Citation |last=Liouville |first=Joseph |author-link=Joseph Liouville |year=1832 |title=Mémoire sur le calcul des différentielles à indices quelconques |journal=Journal de l'École Polytechnique |volume=13 |pages=71–162 |location=Paris |url=https://gallica.bnf.fr/ark:/12148/bpt6k4336778/f72.image}}.</ref><ref>For the history of the subject, see the thesis (in French): Stéphane Dugowson, [http://s.dugowson.free.fr/recherche/dones/index.html ''Les différentielles métaphysiques''] (''histoire et philosophie de la généralisation de l'ordre de dérivation''), Thèse, Université Paris Nord (1994)</ref> [[Oliver Heaviside]] introduced the practical use of [[operational calculus|fractional differential operators]] in electrical transmission line analysis circa 1890.<ref>For a historical review of the subject up to the beginning of the 20th century, see: {{cite journal |doi=10.1016/0315-0860(77)90039-8 |title=The development of fractional calculus 1695–1900 |year=1977 |journal=Historia Mathematica |pages=75–89 |author=Bertram Ross |volume=4 |s2cid=122146887 |doi-access=}}</ref> The theory and applications of fractional calculus expanded greatly over the 19th and 20th centuries, and numerous contributors have given different definitions for fractional derivatives and integrals.<ref>{{cite journal |last1=Valério |first1=Duarte |last2=Machado |first2=José |last3=Kiryakova |first3=Virginia |author3-link=Virginia Kiryakova |date=2014-01-01 |title=Some pioneers of the applications of fractional calculus |journal=Fractional Calculus and Applied Analysis |volume=17 |issue=2 |pages=552–578 |doi=10.2478/s13540-014-0185-1 |hdl=10400.22/5491 |s2cid=121482200 |issn=1314-2224 |hdl-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)