Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Frame bundle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and construction== Let ''<math>E \to X</math>'' be a real [[vector bundle]] of rank ''<math>k</math>'' over a [[topological space]] ''<math>X</math>''. A '''frame''' at a point ''<math>x \in X</math>'' is an [[ordered basis]] for the vector space ''<math>E_x</math>''. Equivalently, a frame can be viewed as a [[linear isomorphism]] :<math>p : \mathbf{R}^k \to E_x.</math> The set of all frames at ''<math>x</math>'', denoted ''<math>F_x</math>'', has a natural [[Group action (mathematics)|right action]] by the [[general linear group]] ''<math>\mathrm{GL}(k,\mathbb{R})</math>'' of invertible ''<math>k \times k</math>'' matrices: a group element ''<math>g \in \mathrm{GL}(k,\mathbb{R})</math>'' acts on the frame ''<math>p</math>'' via [[Function composition|composition]] to give a new frame :<math>p\circ g:\mathbf{R}^k\to E_x.</math> This action of ''<math>\mathrm{GL}(k,\mathbb{R})</math>'' on ''<math>F_x</math>'' is both [[free action|free]] and [[transitive action|transitive]] (this follows from the standard linear algebra result that there is a unique invertible linear transformation sending one basis onto another). As a topological space, ''<math>F_x</math>'' is [[homeomorphic]] to ''<math>\mathrm{GL}(k,\mathbb{R})</math>'' although it lacks a group structure, since there is no "preferred frame". The space ''<math>F_x</math>'' is said to be a ''<math>\mathrm{GL}(k,\mathbb{R})</math>''-[[torsor]]. The '''frame bundle''' of ''<math>E</math>'', denoted by <math>F(E)</math> or <math>F_{\mathrm{GL}}(E)</math>, is the [[disjoint union]] of all the ''<math>F_x</math>'': :<math>\mathrm F(E) = \coprod_{x\in X}F_x.</math> Each point in <math>F(E)</math> is a pair (''x'', ''p'') where ''<math>x</math>'' is a point in ''<math>X</math>'' and ''<math>p</math>'' is a frame at ''<math>x</math>''. There is a natural projection <math>\pi: F(E)\to X</math> which sends '''''<math>(x,p)</math>''''' to ''<math>x</math>''. The group ''<math>\mathrm{GL}(k,\mathbb{R})</math>'' acts on <math>F(E)</math> on the right as above. This action is clearly free and the [[orbit (group theory)|orbit]]s are just the fibers of '''''<math>\pi</math>'''''. === Principal bundle structure === The frame bundle <math>F(E)</math> can be given a natural topology and bundle structure determined by that of ''<math>E</math>''. Let '''''<math>(U_i,\phi_i)</math>''''' be a [[local trivialization]] of ''<math>E</math>''. Then for each ''x'' β ''U''<sub>''i''</sub> one has a linear isomorphism '''''<math>\phi_{i,x}: E_x \to \mathbb{R}^k</math>'''''. This data determines a bijection :<math>\psi_i : \pi^{-1}(U_i)\to U_i\times \mathrm{GL}(k, \mathbb{R})</math> given by :<math>\psi_i(x,p) = (x,\phi_{i,x}\circ p).</math> With these bijections, each '''''<math>\pi^{-1}(U_i)</math>''''' can be given the topology of ''<math>U_i \times \mathrm{GL}(k,\mathbb{R})</math>''. The topology on <math>F(E)</math> is the [[final topology]] coinduced by the inclusion maps '''''<math>\pi^{-1}(U_i) \to F(E)</math>'''''. With all of the above data the frame bundle <math>F(E)</math> becomes a [[principal fiber bundle]] over ''<math>X</math>'' with [[structure group]] ''<math>\mathrm{GL}(k,\mathbb{R})</math>'' and local trivializations '''''<math>(\{U_i\},\{\psi_i\})</math>'''''. One can check that the [[Transition map|transition functions]] of <math>F(E)</math> are the same as those of ''<math>E</math>''. The above all works in the smooth category as well: if ''<math>E</math>'' is a smooth vector bundle over a [[smooth manifold]] ''<math>M</math>'' then the frame bundle of ''<math>E</math>'' can be given the structure of a smooth principal bundle over ''<math>M</math>''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)