Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Framebuffer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == [[File:SWAC 003.jpg|thumb|Memory pattern on [[SWAC (computer)|SWAC]] Williams tube CRT in 1951]] Computer researchers{{who|date=July 2017}} had long discussed the theoretical advantages of a framebuffer but were unable to produce a machine with sufficient [[computer memory|memory]] at an economically practicable cost.{{citation needed|date=August 2017}}<ref name="Gaboury">{{Cite journal|last=Gaboury|first=J.|date=2018-03-01|title=The random-access image: Memory and the history of the computer screen|journal=Grey Room|volume=70|url=https://escholarship.org/uc/item/0b3873pn|issue=70|pages=24–53|doi=10.1162/GREY_a_00233|s2cid=57565564|issn=1526-3819|hdl=21.11116/0000-0001-FA73-4|hdl-access=free}}</ref> In 1947, the [[Manchester Baby]] computer used a [[Williams tube]], later the Williams-Kilburn tube, to store 1024 bits on a [[cathode-ray tube|cathode-ray tube (CRT)]] memory and displayed on a second CRT.<ref>{{Cite journal|last1=Williams|first1=F. C.|last2=Kilburn|first2=T.|date=March 1949|title=A storage system for use with binary-digital computing machines|url=https://ieeexplore.ieee.org/document/5241129|archive-url=https://web.archive.org/web/20190426011059/https://ieeexplore.ieee.org/document/5241129|url-status=dead|archive-date=April 26, 2019|journal=Proceedings of the IEE - Part III: Radio and Communication Engineering|volume=96|issue=40|pages=81–|doi=10.1049/pi-3.1949.0018}}</ref><ref>{{Cite web|url=http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/birth/manchestercomputers/mark1/documents/report1947cover.html|title=Kilburn 1947 Report Cover Notes (Digital 60)|website=curation.cs.manchester.ac.uk|access-date=2019-04-26}}</ref> Other research labs were exploring these techniques with [[MIT Lincoln Laboratory]] achieving a 4096 display in 1950.<ref name="Gaboury" /> A color scanned display was implemented in the late 1960s, called the [[Brookhaven National Laboratory|Brookhaven]] RAster Display (BRAD), which used a [[drum memory]] and a television monitor.<ref>{{citation |author1=D. Ophir |author2=S. Rankowitz |author3=B. J. Shepherd |author4=R. J. Spinrad |title=BRAD: The Brookhave Raster Display |work=Communications of the ACM |volume=11 |number=6 |date=June 1968 |pages=415–416 |doi=10.1145/363347.363385|s2cid=11160780 |doi-access=free }}</ref> In 1969, A. Michael Noll of [[Bell Telephone Laboratories, Inc.]] implemented a scanned display with a frame buffer, using [[magnetic-core memory]].<ref>{{cite journal |last=Noll |first=A. Michael |title=Scanned-Display Computer Graphics |journal=Communications of the ACM |volume=14 |number=3 |date=March 1971 |pages=145–150 |doi=10.1145/362566.362567|s2cid=2210619 |doi-access=free }}</ref> A year or so later, the Bell Labs system was expanded to display an image with a color depth of three bits on a standard color TV monitor. The vector graphics used in the computer had to be converted for the scanned-graphics of a TV display. In the early 1970s, the development of [[MOS memory]] ([[metal–oxide–semiconductor]] memory) [[Integrated circuit|integrated-circuit]] chips, particularly [[large-scale integration|high-density]] [[DRAM]] (dynamic [[random-access memory]]) chips with at least 1{{nbsp}}[[kibibit|kb]] memory, made it practical to create, for the first time, a [[digital memory]] system with framebuffers capable of holding a standard video image.<ref name="Shoup_SuperPaint"/><ref>{{cite conference |last1=Goldwasser |first1=S.M. |title=Computer Architecture For Interactive Display Of Segmented Imagery |conference=Computer Architectures for Spatially Distributed Data |date=June 1983 |publisher=[[Springer Science & Business Media]] |isbn=9783642821509 |pages=75–94 (81) |url=https://books.google.com/books?id=8MuoCAAAQBAJ&pg=PA81}}</ref> This led to the development of the [[SuperPaint]] system by [[Richard Shoup (programmer)|Richard Shoup]] at [[Xerox PARC]] in 1972.<ref name="Shoup_SuperPaint">{{cite web |url=https://ohiostate.pressbooks.pub/app/uploads/sites/45/2017/09/Annals_final.pdf |archive-url=https://web.archive.org/web/20040612215245/http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf |archive-date=2004-06-12 |title=SuperPaint: An Early Frame Buffer Graphics System |author=Richard Shoup |publisher=IEEE |work=Annals of the History of Computing |year=2001 |url-status=dead }}</ref> Shoup was able to use the SuperPaint framebuffer to create an early digital video-capture system. By synchronizing the output signal to the input signal, Shoup was able to overwrite each pixel of data as it shifted in. Shoup also experimented with modifying the output signal using color tables. These color tables allowed the SuperPaint system to produce a wide variety of colors outside the range of the limited 8-bit data it contained. This scheme would later become commonplace in computer framebuffers. In 1974, [[Evans & Sutherland]] released the first commercial framebuffer, the Picture System,<ref>{{citation |title=Picture System |url=http://s3data.computerhistory.org/brochures/evanssutherland.3d.1974.102646288.pdf |publisher=Evans & Sutherland |access-date=2017-12-31}}</ref> costing about $15,000. It was capable of producing resolutions of up to 512 by 512 pixels in 8-bit [[grayscale]], and became a boon for graphics researchers who did not have the resources to build their own framebuffer. The [[New York Institute of Technology]] would later create the first 24-bit color system using three of the Evans & Sutherland framebuffers.<ref name="NYIT-History">{{cite web |url=https://www.cs.cmu.edu/~ph/nyit/masson/nyit.html |title=History of the New York Institute of Technology Graphics Lab |access-date=2007-08-31}}</ref> Each framebuffer was connected to an [[RGB]] color output (one for red, one for green and one for blue), with a Digital Equipment Corporation PDP 11/04 [[minicomputer]] controlling the three devices as one. In 1975, the UK company [[Quantel]] produced the first commercial full-color broadcast framebuffer, the Quantel DFS 3000. It was first used in TV coverage of the [[1976 Montreal Olympics]] to generate a [[picture-in-picture]] inset of the Olympic flaming torch while the rest of the picture featured the runner entering the stadium. The rapid improvement of integrated-circuit technology made it possible for many of the home computers of the late 1970s to contain low-color-depth framebuffers. Today, nearly all computers with graphical capabilities utilize a framebuffer for generating the video signal. [[Amiga]] computers, created in the 1980s, featured special design attention to graphics performance and included a unique [[Hold-And-Modify]] framebuffer capable of displaying 4096 colors. Framebuffers also became popular in high-end workstations and [[arcade system board]]s throughout the 1980s. [[Silicon Graphics|SGI]], [[Sun Microsystems]], [[Hewlett-Packard|HP]], [[Digital Equipment Corporation|DEC]] and [[IBM]] all released framebuffers for their workstation computers in this period. These framebuffers were usually of a much higher quality than could be found in most home computers, and were regularly used in television, printing, computer modeling and 3D graphics. Framebuffers were also used by [[Sega]] for its high-end [[List of Sega arcade system boards|arcade boards]], which were also of a higher quality than on home computers.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)