Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional integration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functional integration== {{Confusing|section|date=January 2014}} {{unreferenced section|date=March 2017}} Whereas standard [[Riemann integral|Riemann integration]] sums a function ''f''(''x'') over a continuous range of values of ''x'', functional integration sums a [[functional (mathematics)|functional]] ''G''[''f''], which can be thought of as a "function of a function" over a continuous range (or space) of functions ''f''. Most functional integrals cannot be evaluated exactly but must be evaluated using [[perturbation methods]]. The formal definition of a functional integral is <math display="block"> \int G[f]\; \mathcal{D}[f] \equiv \int_{\mathbb{R}}\cdots \int_{\mathbb{R}} G[f] \prod_x df(x)\;. </math> However, in most cases the functions ''f''(''x'') can be written in terms of an infinite series of [[orthogonal functions]] such as <math>f(x) = f_n H_n(x)</math>, and then the definition becomes <math display="block"> \int G[f] \; \mathcal{D}[f] \equiv \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} G(f_1; f_2; \ldots) \prod_n df_n\;, </math> which is slightly more understandable. The integral is shown to be a functional integral with a capital <math>\mathcal{D}</math>. Sometimes the argument is written in square brackets <math>\mathcal{D}[f]</math>, to indicate the functional dependence of the function in the functional integration measure.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)