Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Galton–Watson process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==History== There was concern amongst the [[Victorian era|Victorian]]s that [[Aristocracy (class)|aristocratic]] surnames were becoming extinct.<ref>{{cite book |last1=Lysons |first1=Daniel |last2=Lysons |first2=Samuel |title=General history: Extinct noble families |chapter=In Magna Britannia: Volume 6, Devonshire |year=1822 |publisher=British History Online |url=https://www.british-history.ac.uk/magna-britannia/vol6/xcv-cviii |access-date=25 November 2024}}</ref> In 1869, Galton published ''[[Hereditary Genius]]'', in which he treated the extinction of different social groups. Galton originally posed a mathematical question regarding the distribution of surnames in an idealized population in an 1873 issue of ''[[The Educational Times]]:''<ref>{{cite journal |author=[[Francis Galton]] |title=Problem 4001 |journal=[[Educational Times]] |volume=25 |issue=143 |date=1873-03-01 |url=http://ioearc.da.ulcc.ac.uk/9344/1/Educational%20Times%20Vol%2025%20Iss%20143.PDF |url-status=dead |archiveurl=https://web.archive.org/web/20170123114453/http://ioearc.da.ulcc.ac.uk/9344/1/Educational%20Times%20Vol%2025%20Iss%20143.PDF |archivedate=2017-01-23 |page=300}}</ref><blockquote>A large nation, of whom we will only concern ourselves with the adult males, {{math|N}} in number, and who each bear separate surnames colonise a district. Their law of population is such that, in each generation, {{math|''a''{{sub|0}}}} per cent. of the adult males have no male children who reach adult life ; {{math|''a''{{sub|1}}}} have one such male child ; {{math|''a''{{sub|2}}}} have two ; and so on up to {{math|''a''{{sub|5}}}} who have five. Find (1) what proportion of their surnames will have become extinct after {{mvar|r}} generations ; and (2) how many instances there will be of the surname being held by {{mvar|m}} persons.</blockquote>The Reverend [[Henry William Watson]] replied with a solution.<ref>{{cite journal |author=[[Henry William Watson]] |date=1873-08-01 |title=Problem 4001 |url=http://ioearc.da.ulcc.ac.uk/9309/1/Educational%20Times%20Vol%2026%20Iss%20148.PDF |url-status=dead |journal=[[Educational Times]] |volume=26 |issue=148 |page=115 |archiveurl=https://web.archive.org/web/20161201212518/http://ioearc.da.ulcc.ac.uk/9309/1/Educational%20Times%20Vol%2026%20Iss%20148.PDF |archivedate=2016-12-01}}<br /> A first offering submitted by G.S. Carr, according to Galton, was "totally erroneous"; see {{cite journal |author=G. S. Carr |date=1873-04-01 |title=Problem 4001 |url=http://ioearc.da.ulcc.ac.uk/9305/1/Educational%20Times%20Vol%2026%20Iss%20144.PDF |url-status=dead |journal=[[Educational Times]] |volume=26 |issue=144 |page=17 |archiveurl=https://web.archive.org/web/20170803094523/http://ioearc.da.ulcc.ac.uk/9305/1/Educational%20Times%20Vol%2026%20Iss%20144.PDF |archivedate=2017-08-03}}</ref> Together, they then wrote an 1874 paper titled "On the probability of the extinction of families" in the ''Journal of the Anthropological Institute of Great Britain and Ireland'' (now the ''[[Journal of the Royal Anthropological Institute]]'').<ref>Galton, F., & Watson, H. W. (1875). [https://www.jstor.org/stable/pdf/2841222.pdf "On the probability of the extinction of families"]. ''[[Journal of the Royal Anthropological Institute]]'', '''4''', [https://babel.hathitrust.org/cgi/pt?id=mdp.39015027596207;view=1up;seq=166 138–144].</ref> Galton and Watson appear to have derived their process independently of the earlier work by [[Irénée-Jules Bienaymé|I. J. Bienaymé]]; see.<ref>{{Cite journal |author1-link=Chris Heyde |last1=Heyde |first1=C. C.|author2-link=Eugene Seneta |last2=Seneta |first2=E. |date=1972 |title=Studies in the History of Probability and Statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality: A historical note on I. J. Bienaymé |url=https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/59.3.680 |journal=Biometrika |language=en |volume=59 |issue=3 |pages=680–683 |doi=10.1093/biomet/59.3.680 |issn=0006-3444|url-access=subscription }}</ref> Their solution is incomplete, according to which ''all'' family names go extinct with probability 1. [[Irénée-Jules Bienaymé|Bienaymé]] had previously published the answer to the problem in 1845,<ref>Bienayme, I.J. (1845). ''[https://probabilityandfinance.com/pulskamp/Bienayme/trans%201845.pdf De la loi de multiplication et de la durée des families]''. L’Institut, 589, Vol. 13, pp. 131–132. Soc. Philomat. Paris Extraits, Ser. 5, 37–39. (Reprinted in Kendall, D. G. (1975))</ref> with a promise to publish the derivation later, however there is no known publication of his solution. (However, Bru (1991)<ref>Bru, Bernard. "A la recherche de la démonstration perdue de Bienaymé." ''Mathématiques et Sciences humaines'' 114 (1991): 5-17.</ref> purports to reconstruct the proof). He was inspired by [[Émile Littré]]<ref>Littré, Émile. ''Analyse raisonnée du cours de philosophie positive de M. Auguste Comte''. 1845.</ref> and [[:fr:Louis-François Benoiston de Châteauneuf|Louis-François Benoiston de Châteauneuf]] (a friend of Bienaymé).<ref>L. F. Benoiston de Châteauneuf, "''Sur la durée des familles nobles de France''," Séances et Travaux de l'Académie des Sciences Morales et Politiques: Comptes Rendus, 7 (1845), 210-240.</ref><ref name=":1" /> [[Antoine Augustin Cournot|Cournot]] published a solution in 1847, in Chapter V, §36 of ''De l'origine et des limites de la correspondance entre l'algèbre et la géométrie''.<ref>{{Cite book |last=Cournot |first=A. A. (Antoine Augustin) |url=http://archive.org/details/delorigineetdesl00cour |title=De l'origine et des limites de la correspondance entre l'algèbre et la géométrie |date=1847 |publisher=Paris : L. Hachette |others=University of Illinois Urbana-Champaign}}</ref> The problem in his formulation is the following: consider a gambler who buys lotteries. Each lottery costs 1 [[écu]] and pays {{math|0, 1, ..., ''m''}} écus with probabilities {{math|''k''{{sub|0}}, ''k''{{sub|1}}, ..., ''k{{sub|m}}''}}, respectively. The gambler starts with 1 écu before round 1, and at each round of gambling spends all their money to buy lotteries. Let {{math|''p{{sub|n}}''}} denote the probability that the gambler goes backrupt before the {{math|(''n''+1)}}-th round of gambling. What is the limit of {{math|''p{{sub|n}}''}}? Ronald A. Fisher in 1922 studied the same problem formulated in terms of genetics. Instead of the extinction of family names, he studied the probability for a mutant gene to eventually disappear in a large population.<ref>{{Cite journal |last=Fisher |first=R. A. |date=1922 |title=XXI.—On the Dominance Ratio |url=https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh/article/abs/xxion-the-dominance-ratio/2CDBE1D374EBE9B2774DF301BA98A584 |journal=Proceedings of the Royal Society of Edinburgh |language=en |volume=42 |pages=321–341 |doi=10.1017/S0370164600023993 |issn=0370-1646|url-access=subscription }}</ref> [[J. B. S. Haldane|Haldane]] solved the problem in 1927.<ref>{{Cite journal |last=Haldane |first=J. B. S. |authorlink=J. B. S. Haldane |date=July 1927 |title=A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/mathematical-theory-of-natural-and-artificial-selection-part-v-selection-and-mutation/9B6F4FE68136A70E06133E2E389EFA5B |journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |language=en |volume=23 |issue=7 |pages=838–844 |doi=10.1017/S0305004100015644 |bibcode=1927PCPS...23..838H |s2cid=86716613 |issn=1469-8064|url-access=subscription }}</ref> [[Agner Krarup Erlang]] was a member of the prominent Krarup family, which was going extinct. In 1929, he published the same problem posthumously (his obituary appears beside the problem). Erlang died childless. [[Johan Frederik Steffensen|Steffensen]] solved it in 1930. For a detailed history, see Kendall (1966<ref>{{Cite journal |last=Kendall |first=David G. |date=1966 |title=Branching Processes Since 1873 |url=http://doi.wiley.com/10.1112/jlms/s1-41.1.385 |journal=Journal of the London Mathematical Society |language=en |volume=s1-41 |issue=1 |pages=385–406 |doi=10.1112/jlms/s1-41.1.385|url-access=subscription }}</ref> and 1975<ref name=":1">{{Cite journal |last=Kendall |first=David G. |date=November 1975 |title=The Genealogy of Genealogy Branching Processes before (and after) 1873 |url=http://doi.wiley.com/10.1112/blms/7.3.225 |journal=Bulletin of the London Mathematical Society |language=en |volume=7 |issue=3 |pages=225–253 |doi=10.1112/blms/7.3.225|url-access=subscription }}</ref>) and<ref>{{Cite journal |last=Albertsen |first=K. |date=1995 |title=The Extinction of Families |url=https://www.jstor.org/stable/1403617 |journal=International Statistical Review / Revue Internationale de Statistique |volume=63 |issue=2 |pages=234–239 |doi=10.2307/1403617 |jstor=1403617 |s2cid=124630211 |issn=0306-7734|url-access=subscription }}</ref> and also Section 17 of.<ref name=":0">{{Cite journal |last1=Simkin |first1=M. V. |last2=Roychowdhury |first2=V. P. |date=2011-05-01 |title=Re-inventing Willis |url=https://www.sciencedirect.com/science/article/pii/S0370157310003339 |journal=Physics Reports |language=en |volume=502 |issue=1 |pages=1–35 |doi=10.1016/j.physrep.2010.12.004 |arxiv=physics/0601192 |bibcode=2011PhR...502....1S |s2cid=88517297 |issn=0370-1573}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)