Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gauss–Newton algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Description == Given <math>m</math> functions <math>\textbf{r} = (r_1, \ldots, r_m)</math> (often called residuals) of <math>n</math> variables <math>\boldsymbol{\beta} = (\beta_1, \ldots \beta_n),</math> with <math>m \geq n,</math> the Gauss–Newton algorithm [[iterative method|iteratively]] finds the value of <math>\beta</math> that minimize the sum of squares<ref name=ab>Björck (1996)</ref> <math display="block"> S(\boldsymbol \beta) = \sum_{i=1}^m r_i(\boldsymbol \beta)^{2}.</math> Starting with an initial guess <math>\boldsymbol \beta^{(0)}</math> for the minimum, the method proceeds by the iterations <math display="block"> \boldsymbol \beta^{(s+1)} = \boldsymbol \beta^{(s)} - \left(\mathbf{J_r}^\operatorname{T} \mathbf{J_r} \right)^{-1} \mathbf{J_r}^\operatorname{T} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right), </math> where, if '''r''' and '''''β''''' are [[column vectors]], the entries of the [[Jacobian matrix]] are <math display="block"> \left(\mathbf{J_r}\right)_{ij} = \frac{\partial r_i \left(\boldsymbol \beta^{(s)}\right)}{\partial \beta_j},</math> and the symbol <math>^\operatorname{T}</math> denotes the [[matrix transpose]]. At each iteration, the update <math>\Delta = \boldsymbol \beta^{(s+1)} - \boldsymbol \beta^{(s)}</math> can be found by rearranging the previous equation in the following two steps: *<math>\Delta = -\left(\mathbf{J_r}^\operatorname{T} \mathbf{J_r} \right)^{-1} \mathbf{J_r}^\operatorname{T} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right)</math> *<math>\mathbf{J_r}^\operatorname{T} \mathbf{J_r} \Delta = -\mathbf{J_r}^\operatorname{T} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right) </math> With substitutions <math display="inline">A = \mathbf{J_r}^\operatorname{T} \mathbf{J_r} </math>, <math>\mathbf{b} = -\mathbf{J_r}^\operatorname{T} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right) </math>, and <math>\mathbf {x} = \Delta </math>, this turns into the conventional matrix equation of form <math>A\mathbf {x} = \mathbf {b} </math>, which can then be solved in a variety of methods (see [[#Notes|Notes]]). If {{math|1=''m'' = ''n''}}, the iteration simplifies to <math display="block"> \boldsymbol \beta^{(s+1)} = \boldsymbol \beta^{(s)} - \left(\mathbf{J_r}\right)^{-1} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right),</math> which is a direct generalization of [[Newton's method]] in one dimension. In data fitting, where the goal is to find the parameters <math>\boldsymbol{\beta}</math> such that a given model function <math> \mathbf{f}(\mathbf{x}, \boldsymbol{\beta}) </math> best fits some data points <math> (x_i, y_i) </math>, the functions <math> r_i </math>are the [[residual (statistics)|residuals]]: <math display="block">r_i(\boldsymbol \beta) = y_i - f\left(x_i, \boldsymbol \beta\right).</math> Then, the Gauss–Newton method can be expressed in terms of the Jacobian <math> \mathbf{J_f} = -\mathbf{J_r} </math> of the function <math> \mathbf{f} </math> as <math display="block"> \boldsymbol \beta^{(s+1)} = \boldsymbol \beta^{(s)} + \left(\mathbf{J_f}^\operatorname{T} \mathbf{J_f} \right)^{-1} \mathbf{J_f}^\operatorname{T} \mathbf{r}\left(\boldsymbol \beta^{(s)}\right). </math> Note that <math>\left(\mathbf{J_f}^\operatorname{T} \mathbf{J_f}\right)^{-1} \mathbf{J_f}^\operatorname{T}</math> is the left [[Moore–Penrose pseudoinverse|pseudoinverse]] of <math>\mathbf{J_f}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)