Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian binomial coefficient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== The Gaussian binomial coefficients are defined by:<ref>Mukhin, Eugene, chapter 3</ref> :<math>{m \choose r}_q = \frac{(1-q^m)(1-q^{m-1})\cdots(1-q^{m-r+1})} {(1-q)(1-q^2)\cdots(1-q^r)} </math> where ''m'' and ''r'' are non-negative integers. If {{math|''r'' > ''m''}}, this evaluates to 0. For {{math|''r'' {{=}} 0}}, the value is 1 since both the numerator and denominator are [[empty product]]s. Although the formula at first appears to be a [[rational function]], it actually is a polynomial, because the division is exact in '''Z'''<nowiki>[</nowiki>''q''<nowiki>]</nowiki> All of the factors in numerator and denominator are divisible by {{math|1 β ''q''}}, and the quotient is the [[Q-analog#Introductory examples|''q''-number]]: :<math>[k]_q=\sum_{0\leq i<k}q^i=1+q+q^2+\cdots+q^{k-1}= \begin{cases} \frac{1-q^k}{1-q} & \text{for} & q \neq 1 \\ k & \text{for} & q = 1 \end{cases},</math> Dividing out these factors gives the equivalent formula :<math>{m \choose r}_q=\frac{[m]_q[m-1]_q\cdots[m-r+1]_q}{[1]_q[2]_q\cdots[r]_q}\quad(r\leq m).</math> In terms of the [[Q-analog#Introductory examples|''q'' factorial]] <math>[n]_q!=[1]_q[2]_q\cdots[n]_q</math>, the formula can be stated as :<math>{m \choose r}_q=\frac{[m]_q!}{[r]_q!\,[m-r]_q!}\quad(r\leq m).</math> Substituting {{math|''q'' {{=}} 1}} into <math>\tbinom mr_q</math> gives the ordinary binomial coefficient <math>\tbinom mr</math>. The Gaussian binomial coefficient has finite values as <math>m\rightarrow \infty</math>: :<math>{\infty \choose r}_q = \lim_{m\rightarrow \infty} {m \choose r}_q = \frac{1} {(1-q)(1-q^2)\cdots(1-q^r)} = \frac{1}{[r]_q!\,(1-q)^r}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)