Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== A time continuous [[stochastic process]] <math>\left\{X_t ; t\in T\right\}</math> is Gaussian [[if and only if]] for every [[finite set]] of [[indexed family|indices]] <math>t_1,\ldots,t_k</math> in the index set <math>T</math> <math display="block"> \mathbf{X}_{t_1, \ldots, t_k} = (X_{t_1}, \ldots, X_{t_k}) </math> is a [[multivariate normal distribution|multivariate Gaussian]] [[random variable]].<ref name="DrMacKayGPNN">{{cite book| last=MacKay | first=David J.C.| author-link=David J.C. MacKay| title=Information Theory, Inference, and Learning Algorithms |year=2003 | pages=540|publisher=[[Cambridge University Press]]| isbn=9780521642989|url=http://www.inference.phy.cam.ac.uk/itprnn/book.pdf | quote=The probability distribution of a function <math>y(\mathbf{x})</math> is a Gaussian processes if for any finite selection of points <math>\mathbf{x}^{(1)},\mathbf{x}^{(2)},\ldots,\mathbf{x}^{(N)}</math>, the density <math>P(y(\mathbf{x}^{(1)}),y(\mathbf{x}^{(2)}),\ldots,y(\mathbf{x}^{(N)}))</math> is a Gaussian}}</ref> As the sum of independent and Gaussian distributed random variables is again Gaussian distributed, that is the same as saying every linear combination of <math> (X_{t_1}, \ldots, X_{t_k}) </math> has a univariate Gaussian (or normal) distribution. Using [[Characteristic function (probability theory)|characteristic functions]] of random variables with <math>i</math> denoting the [[imaginary unit]] such that <math>i^2 =-1</math>, the Gaussian property can be formulated as follows: <math>\left\{X_t ; t\in T\right\}</math> is Gaussian if and only if, for every finite set of indices <math>t_1,\ldots,t_k</math>, there are real-valued <math>\sigma_{\ell j}</math>, <math>\mu_\ell</math> with <math>\sigma_{jj} > 0</math> such that the following equality holds for all <math>s_1,s_2,\ldots,s_k\in\mathbb{R}</math>, <math display="block"> { \mathbb E }\left[\exp\left(i \sum_{\ell=1}^k s_\ell \, \mathbf{X}_{t_\ell}\right)\right] = \exp \left(-\tfrac{1}{2} \sum_{\ell, j} \sigma_{\ell j} s_\ell s_j + i \sum_\ell \mu_\ell s_\ell\right),</math> or <math> { \mathbb E } \left[ {\mathrm e}^{ i\, \mathbf{s}\, (\mathbf{X}_t - \mathbf{\mu}) } \right] = {\mathrm e}^{ - \mathbf{s}\, \sigma\, \mathbf{s}/2 }</math>. The numbers <math>\sigma_{\ell j}</math> and <math>\mu_\ell</math> can be shown to be the [[covariance]]s and [[mean (mathematics)|means]] of the variables in the process.<ref>{{cite book |last=Dudley |first=R.M. |title=Real Analysis and Probability |year=1989 |publisher=Wadsworth and Brooks/Cole |isbn=0-534-10050-3 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)