Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gaussian quadrature
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Gauss–Legendre quadrature == <!-- The section "Other forms of Gaussian quadrature" below links to this section --> {{Further|Gauss–Legendre quadrature}} [[File:Legendrepolynomials6.svg|thumb|Graphs of Legendre polynomials (up to {{math|1=''n'' = 5)}}]] For the simplest integration problem stated above, i.e., {{math|''f''(''x'')}} is well-approximated by polynomials on <math>[-1, 1]</math>, the associated orthogonal polynomials are [[Legendre polynomials]], denoted by {{math|''P''<sub>''n''</sub>(''x'')}}. With the {{mvar|n}}-th polynomial normalized to give {{math|1=''P''<sub>''n''</sub>(1) = 1}}, the {{mvar|i}}-th Gauss node, {{mvar|x<sub>i</sub>}}, is the {{mvar|i}}-th root of {{mvar|P<sub>n</sub>}} and the weights are given by the formula<ref>{{harvnb|Abramowitz|Stegun|1983|p=887}}</ref> <math display="block"> w_i = \frac{2}{\left( 1 - x_i^2 \right) \left[P'_n(x_i)\right]^2}.</math> Some low-order quadrature rules are tabulated below (over interval {{math|[−1, 1]}}, see the section below for other intervals). {| class="wikitable" style="margin:auto; background:white; text-align:center;" ! Number of points, {{mvar|n}} ! colspan="2" | Points, {{mvar|x<sub>i</sub>}} ! colspan="2" | Weights, {{mvar|w<sub>i</sub>}} |- | 1 | colspan="2" | 0 | colspan="2" | 2 |- | 2 | <math>\pm\frac{1}{\sqrt{3}}</math> || ±0.57735... | colspan="2" | 1 |- | rowspan="2" | 3 | colspan="2" | 0 | <math>\frac{8}{9}</math> || 0.888889... |- | <math>\pm\sqrt{\frac{3}{5}}</math> || ±0.774597... | <math>\frac{5}{9}</math> || 0.555556... |- | rowspan="2" | 4 | <math>\pm\sqrt{\frac{3}{7} - \frac{2}{7}\sqrt{\frac{6}{5}}}</math> || ±0.339981... | <math>\frac{18 + \sqrt{30}}{36}</math> || 0.652145... |- | <math>\pm\sqrt{\frac{3}{7} + \frac{2}{7}\sqrt{\frac{6}{5}}}</math> || ±0.861136... | <math>\frac{18 - \sqrt{30}}{36}</math> || 0.347855... |- | rowspan="3" | 5 | colspan="2" | 0 | <math>\frac{128}{225}</math> || 0.568889... |- | <math>\pm\frac{1}{3}\sqrt{5 - 2\sqrt{\frac{10}{7}}}</math> || ±0.538469... | <math>\frac{322 + 13\sqrt{70}}{900}</math> || 0.478629... |- | <math>\pm\frac{1}{3}\sqrt{5 + 2\sqrt{\frac{10}{7}}}</math> || ±0.90618... | <math>\frac{322 - 13\sqrt{70}}{900}</math> || 0.236927... |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)