Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Georgi–Glashow model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Construction== [[File:SU(5) representation of fermions.png|thumb|Schematic representation of fermions and bosons in {{math|SU(5)}} GUT showing {{nowrap|'''5''' + '''10'''}} split in the multiplets. Row for {{math|'''1'''}} (the [[sterile neutrino]] singlet) is omitted, but would likewise be isolated. Neutral bosons (photon, Z-boson, and neutral gluons) are not shown but occupy the diagonal entries of the matrix in complex superpositions.]] {{Expand section|date=July 2019}} SU(5) acts on <math>\mathbb{C}^5</math> and hence on its [[exterior algebra]] <math>\wedge\mathbb{C}^5</math>. Choosing a <math>\mathbb{C}^2\oplus\mathbb{C}^3</math> splitting restricts SU(5) to {{math|S(U(2)×U(3))}}, yielding matrices of the form :<math>\begin{matrix} \phi: & U(1)\times SU(2)\times SU(3) & \longrightarrow & S(U(2)\times U(3)) \subset SU(5) \\ & (\alpha, g, h) & \longmapsto & \begin{pmatrix} \alpha^3 g & 0\\ 0 & \alpha^{-2}h \end{pmatrix}\\ \end{matrix}</math> with [[kernel (algebra)|kernel]] <math>\{(\alpha, \alpha^{-3} \mathrm{Id}_2, \alpha^2 \mathrm{Id}_3) | \alpha \in \mathbb C , \alpha ^6 = 1 \}\cong \mathbb Z_6</math>, hence isomorphic to the [[Standard Model]]'s true [[gauge group]] <math>SU(3)\times SU(2)\times U(1)/\mathbb{Z}_6</math>. For the zeroth power <math>{\textstyle\bigwedge}^0\mathbb{C}^5</math>, this acts trivially to match a left-handed [[neutrino]], <math>\mathbb{C}_0\otimes\mathbb{C}\otimes\mathbb{C}</math>. For the first exterior power <math>{\textstyle\bigwedge}^1\mathbb{C}^5 \cong \mathbb{C}^5</math>, the Standard Model's group action preserves the splitting <math>\mathbb{C}^5 \cong \mathbb{C}^2\oplus\mathbb{C}^3</math>. The <math>\mathbb{C}^2</math> transforms trivially in {{math|SU(3)}}, as a doublet in {{math|SU(2)}}, and under the {{math|Y {{=}} {{sfrac|1|2}}}} representation of {{math|U(1)}} (as [[weak hypercharge]] is conventionally normalized as {{math|α<sup>3</sup> {{=}} α<sup>6Y</sup>}}); this matches a right-handed anti-[[lepton]], <math>\mathbb{C}_{\frac 1 2}\otimes\mathbb{C}^{2*}\otimes\mathbb{C}</math> (as <math>\mathbb{C}^{2}\cong\mathbb{C}^{2*}</math> in SU(2)). The <math>\mathbb{C}^3</math> transforms as a triplet in SU(3), a singlet in SU(2), and under the Y = −{{sfrac|1|3}} representation of U(1) (as {{math|α<sup>−2</sup> {{=}} α<sup>6Y</sup>}}); this matches a right-handed [[down quark]], <math>\mathbb{C}_{-\frac 1 3}\otimes\mathbb{C}\otimes\mathbb{C}^3</math>. The second power <math>{\textstyle\bigwedge}^2\mathbb{C}^5</math> is obtained via the formula <math>{\textstyle\bigwedge}^2(V\oplus W)={\textstyle\bigwedge}^2 V^2 \oplus (V\otimes W) \oplus {\textstyle\bigwedge}^2 W^2</math>. As SU(5) preserves the canonical volume form of <math>\mathbb{C}^5</math>, [[Hodge dual]]s give the upper three powers by <math>{\textstyle\bigwedge}^p\mathbb{C}^5\cong({\textstyle\bigwedge}^{5-p}\mathbb{C}^5)^*</math>. Thus the Standard Model's representation {{math|''F'' ⊕ ''F*''}} of one [[Generation (particle physics)|generation]] of [[fermion]]s and antifermions lies within <math>\wedge\mathbb{C}^5</math>. Similar motivations apply to the [[Pati–Salam model|Pati–Salam]] model, and to [[SO(10)]], E6, and other supergroups of SU(5).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)