Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Group 3 element
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Composition== {{Periodic table (micro)|mark=Sc,Y,Lu,Lr|title=Group 3: Sc, Y, Lu, Lr [[Image:Yes check.svg|15px|Correct]]}} {{Periodic table (micro)|form=Sc, Y, La, Ac|mark=Sc,Y,La,Ac|title=Group 3: Sc, Y, La, Ac [[Image:X mark.svg|15px|Incorrect]]}} Physical, chemical, and electronic evidence overwhelmingly shows that the correct elements in group 3 are scandium, yttrium, lutetium, and lawrencium:<ref>Rothbaum, J. O.; Motta, A.*; Kratish, Y.*; Marks, T.J.* Chemodivergent Organolanthanide Catalyzed C-H a-Mono-Borylation of Pyridines. J. Am. Chem. Soc. 2022, 144, 17086-17096: https://pubs.acs.org/doi/10.1021/jacs.2c06844</ref><ref name="Jensen2015">{{cite journal |last1=Jensen |first1=William B. |date=2015 |author-link=William B. Jensen |title=The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: an update |url=https://link.springer.com/article/10.1007/s10698-015-9216-1 |journal=Foundations of Chemistry |volume=17 |issue= |pages=23–31 |doi=10.1007/s10698-015-9216-1 |s2cid=98624395 |access-date=28 January 2021 |archive-date=30 January 2021 |archive-url=https://web.archive.org/web/20210130011116/https://link.springer.com/article/10.1007/s10698-015-9216-1 |url-status=live |url-access=subscription }}</ref><ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref><ref name="Jensen1982">{{cite journal |title=The Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic Table |first=William B. |last=Jensen |author-link=William B. Jensen |journal=J. Chem. Educ. |year=1982 |volume=59 |issue = 8|pages=634–636 |doi=10.1021/ed059p634|bibcode=1982JChEd..59..634J }}</ref><ref name=Landau>{{cite book |author=[[Lev Landau|L. D. Landau]], [[Evgeny Lifshitz|E. M. Lifshitz]] |year=1958 |title=Quantum Mechanics: Non-Relativistic Theory |edition=1st |volume=3 |publisher=[[Pergamon Press]] |pages=256–7 }}</ref><ref name="Wittig">{{cite book |last=Wittig |first=Jörg |editor=H. J. Queisser |date=1973 |title=Festkörper Probleme: Plenary Lectures of the Divisions Semiconductor Physics, Surface Physics, Low Temperature Physics, High Polymers, Thermodynamics and Statistical Mechanics, of the German Physical Society, Münster, March 19–24, 1973 |chapter=The pressure variable in solid state physics: What about 4f-band superconductors? |series=Advances in Solid State Physics |volume=13 |location=Berlin, Heidelberg |publisher=Springer |pages=375–396 |isbn=978-3-528-08019-8 |doi=10.1007/BFb0108579}}</ref><ref name=Matthias>{{cite book |last=Matthias |first=B. T. |date=1969 |editor-last=Wallace |editor-first=P. R. |title=Superconductivity |publisher=Gordon and Breach |pages=225–294 <!--precise quote calling it a mistake is on pp. 247–9--> |chapter=Systematics of Super Conductivity |isbn=9780677138107 |volume=1}}</ref> this is the classification adopted by most chemists and physicists who have considered the matter.<ref name=Jensen2015/> It was supported by IUPAC in a 1988 report<ref name=Fluck/> and reaffirmed in 2021.<ref name=2021IUPAC/> Many textbooks however show group 3 as containing scandium, yttrium, lanthanum, and actinium, a format based on historically wrongly measured electron configurations:<ref name=Jensen1982/> [[Lev Landau]] and [[Evgeny Lifshitz]] already considered it to be "incorrect" in 1948,<ref name=Landau/> but the issue was brought to a wide debate only in 1982 by [[William B. Jensen]].<ref name="Jensen1982"/> The spaces below yttrium are sometimes left blank as a third option, but there is confusion in the literature on whether this format implies that group 3 contains only scandium and yttrium, or if it also contains all the lanthanides and actinides;<ref name=2021IUPAC/><ref name=Thyssen/><ref name="JWP">{{cite journal |author=Barber, Robert C. |author2=Karol, Paul J |author3=Nakahara, Hiromichi |author4=Vardaci, Emanuele |author5=Vogt, Erich W. |title=Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report) |doi=10.1351/PAC-REP-10-05-01 |journal=Pure Appl. Chem. |date=2011 |volume=83 |issue=7 |page=1485|doi-access=free }}</ref><ref name="Karol">{{cite journal |last1=Karol |first1=Paul J. |last2=Barber |first2=Robert C. |last3=Sherrill |first3=Bradley M. |last4=Vardaci |first4=Emanuele |last5=Yamazaki |first5=Toshimitsu |date=22 December 2015 |title=Discovery of the elements with atomic numbers Z = 113, 115 and 117 (IUPAC Technical Report) |journal=Pure Appl. Chem. |volume=88 |issue=1–2 |pages=139–153 |doi=10.1515/pac-2015-0502|doi-access=free }}</ref><ref>{{cite journal |last1=Pyykkö |first1=Pekka |date=2019 |title=An essay on periodic tables |url=http://www.chem.helsinki.fi/~pyykko/pekka/No330b.pdf |journal=Pure and Applied Chemistry |volume=91 |issue=12 |pages=1959–1967 |doi=10.1515/pac-2019-0801 |s2cid=203944816 |access-date=27 November 2022}}</ref> either way, this format contradicts quantum physics by creating a 15-element-wide f-block when only 14 electrons can fit in an f-subshell.<ref name=2021IUPAC/> While the 2021 IUPAC report noted that 15-element-wide f-blocks are supported by some practitioners of a specialised branch of [[relativistic quantum mechanics]] focusing on the properties of [[superheavy element]]s, the project's opinion was that such interest-dependent concerns should not have any bearing on how the periodic table is presented to "the general chemical and scientific community".<ref name=2021IUPAC/> In fact, relativistic quantum-mechanical calculations of Lu and Lr compounds found no valence f-orbitals in either element.<ref name=XuPyykko>{{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> Other authors focusing on superheavy elements since clarified that the "15th entry of the f-block represents the first slot of the d-block which is left vacant to indicate the place of the f-block inserts", which would imply that this form still has Lu and Lr (the 15th entries in question) as d-block elements under Sc and Y.<ref name=smits>{{cite journal |last1=Smits |first1=Odile R. |last2=Düllmann |first2=Christoph E. |last3=Indelicato |first3=Paul |last4=Nazarewicz |first4=Witold |last5=Schwerdtfeger |first5=Peter |date=2023 |title=The quest for superheavy elements and the limit of the periodic table |url= |journal=Nature Reviews Physics |volume= 6|issue= 2|pages= 86–98|doi=10.1038/s42254-023-00668-y |s2cid=266276980 |access-date=}}</ref> Indeed, when IUPAC publications expand the table to 32 columns, they make this clear and place Lu and Lr under Y.<ref>{{cite journal |last1=Leigh |first1=G. Jeffrey |date=2009 |title=Periodic Tables and IUPAC |url=https://publications.iupac.org/ci/2009/3101/1_leigh.html |journal=Chemistry International |volume=31 |issue=1 |pages=4–6 |doi=10.1515/ci.2009.31.1.4 |access-date=8 January 2024}}</ref><ref>{{cite book |editor-last=Leigh |editor-first=G. Jeffrey |date=1990 |title=Nomenclature of inorganic chemistry : recommendations 1990 |url=https://archive.org/details/nomenclatureofin0000unse/page/282/mode/2up |location= |publisher=Blackwell Scientific Publications |page=283 |isbn=0-632-02319-8}}</ref> As noted by the 2021 IUPAC report, Sc-Y-Lu-Lr is the only form that simultaneously allows for the preservation of the sequence of atomic number, avoids splitting the d-block into "two highly uneven portions", and gives the blocks the correct widths quantum mechanics demands (2, 6, 10, and 14).<ref name="2021IUPAC">{{cite journal |last1=Scerri |first1=Eric |date=18 January 2021 |title=Provisional Report on Discussions on Group 3 of the Periodic Table |url=https://iupac.org/wp-content/uploads/2021/04/ChemInt_Jan2021_PP.pdf |journal=Chemistry International |volume=43 |issue=1 |pages=31–34 |doi=10.1515/ci-2021-0115 |s2cid=231694898 |access-date=9 April 2021 |archive-date=13 April 2021 |archive-url=https://web.archive.org/web/20210413150110/https://iupac.org/wp-content/uploads/2021/04/ChemInt_Jan2021_PP.pdf |url-status=live }}</ref> While arguments in favour of Sc-Y-La-Ac can still be found in the literature, many authors consider them to be logically inconsistent.<ref name=Jensen1982/><ref name=Jensen2015/> For example, it has been argued that lanthanum and actinium cannot be f-block elements because their atoms have not begun to fill the f-subshells.<ref name=Lavelle>{{cite journal |last1=Lavelle |first1=Laurence |date=2008 |title=Lanthanum (La) and Actinium (Ac) Should Remain in the d-block |journal=Journal of Chemical Education |volume=85 |issue=11 |pages=1482–1483 |doi=10.1021/ed085p1482|bibcode=2008JChEd..85.1482L |doi-access=free }}</ref> But the same is true of thorium which is never disputed as an f-block element,<ref name=2021IUPAC/><ref name=Jensen1982/> and this argument overlooks the problem on the other end: that the f-shells complete filling at ytterbium and nobelium (matching the Sc-Y-Lu-Lr form), not at lutetium and lawrencium (as in Sc-Y-La-Ac).<ref name=johnson>{{cite book |last=Johnson |first=David |author-link= |date=1984 |title=The Periodic Law |url=https://www.rsc.org/images/23_The_Periodic_Law_tcm18-30005.pdf |location= |publisher=The Royal Society of Chemistry |page= |isbn=0-85186-428-7}}</ref> Lanthanum, actinium, and thorium are simply examples of exceptions to the [[Aufbau principle#Madelung energy ordering rule|Madelung rule]]; not only do those exceptions represent a minority of elements (only 20 out of 118),<ref name=johnson/> but they have also never been considered as relevant for positioning any other elements on the periodic table. In gaseous atoms, the d-shells complete their filling at copper (3d<sup>10</sup>4s<sup>1</sup>), palladium (4d<sup>10</sup>5s<sup>0</sup>), and gold (5d<sup>10</sup>6s<sup>1</sup>), but it is universally accepted by chemists that these configurations are exceptional and that the d-block really ends in accordance with the Madelung rule at zinc (3d<sup>10</sup>4s<sup>2</sup>), cadmium (4d<sup>10</sup>5s<sup>2</sup>), and mercury (5d<sup>10</sup>6s<sup>2</sup>).<ref name="Thyssen">{{cite book|last1=Thyssen|first1=P.|last2=Binnemans|first2=K.|editor1-last=Gschneidner|editor1-first= K. A. Jr.|editor2-last=Bünzli|editor2-first=J-C.G|editor3-last=Vecharsky|editor3-first=Bünzli|date=2011|title=Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis|journal=Handbook on the Physics and Chemistry of Rare Earths|publisher=Elsevier|location=Amsterdam|volume=41|pages=1–94|isbn=978-0-444-53590-0|doi=10.1016/B978-0-444-53590-0.00001-7}}</ref> The relevant fact for placement is that lanthanum and actinium (like thorium) have valence f-orbitals that can become occupied in chemical environments, whereas lutetium and lawrencium do not:<ref name=Wittig/><ref name=jensenlaw/> their f-shells are in the core, and cannot be used for chemical reactions.<ref>{{cite book |last=Wulfsberg |first=Gary |author-link= |date=2000 |title=Inorganic Chemistry |url= |location= |publisher=University Science Books |page=26 |isbn=9781891389016}}</ref><ref>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=2010-12-08 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> Thus the relationship between yttrium and lanthanum is only a secondary relationship between elements with the same number of valence electrons but different kinds of valence orbitals, such as that between chromium and uranium; whereas the relationship between yttrium and lutetium is primary, sharing both valence electron count and valence orbital type.<ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|last1=Jensen|first1=William B.|authorlink=William B. Jensen|title=The Periodic Law and Table|date=2000|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf |access-date=10 December 2022|archive-date=2020-11-10 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)