Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gudermannian function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Circular–hyperbolic identities == We can evaluate the integral of the hyperbolic secant using the stereographic projection ([[tangent half-angle substitution#Hyperbolic functions|hyperbolic half-tangent]]) as a [[Integration by substitution|change of variables]]:<ref>{{harvp|Masson|2021}}</ref> :<math>\begin{align} \operatorname{gd} \psi &\equiv \int_0^\psi \frac{1}{\operatorname{cosh} t}\mathrm{d}t = \int_0^{\tanh\frac12\psi} \frac{1-u^2}{1 + u^2}\frac{2\,\mathrm{d}u}{1 - u^2} \qquad \bigl(u = \tanh\tfrac12 t \bigr) \\[8mu] &= 2\int_0^{\tanh\frac12\psi} \frac{1}{1 + u^2} \mathrm{d}u = {2\arctan}\bigl(\tanh\tfrac12\psi\,\bigr), \\[5mu] \tan\tfrac12{\operatorname{gd} \psi} &= \tanh\tfrac12\psi. \end{align}</math> Letting <math display=inline>\phi = \operatorname{gd} \psi</math> and <math display=inline>s = \tan \tfrac12 \phi = \tanh \tfrac12 \psi</math> we can derive a number of identities between hyperbolic functions of <math display=inline>\psi</math> and circular functions of <math display=inline>\phi.</math><ref>{{harvp|Gottschalk|2003}} pp. 23–27</ref> [[File:Gudermannian identities.png|frameless|left|upright=2|Identities related to the Gudermannian function represented graphically.]] {{clear|left}} :<math>\begin{align} s &= \tan \tfrac12 \phi = \tanh \tfrac12 \psi, \\[6mu] \frac{2s}{1 + s^2} &= \sin \phi = \tanh \psi, \quad & \frac{1 + s^2}{2s} &= \csc \phi = \coth \psi, \\[10mu] \frac{1 - s^2}{1 + s^2} &= \cos \phi = \operatorname{sech} \psi, \quad & \frac{1 + s^2}{1 - s^2} &= \sec \phi = \cosh \psi, \\[10mu] \frac{2s}{1 - s^2} &= \tan \phi = \sinh \psi, \quad & \frac{1 - s^2}{2s} &= \cot \phi = \operatorname{csch} \psi. \\[8mu] \end{align}</math> These are commonly used as expressions for <math>\operatorname{gd}</math> and <math>\operatorname{gd}^{-1}</math> for real values of <math>\psi</math> and <math>\phi</math> with <math>|\phi| < \tfrac12\pi.</math> For example, the numerically well-behaved formulas :<math>\begin{align} \operatorname{gd} \psi &= \operatorname{arctan} (\sinh \psi), \\[6mu] \operatorname{gd}^{-1} \phi &= \operatorname{arsinh} (\tan \phi). \end{align}</math> (Note, for <math>|\phi| > \tfrac12\pi</math> and for complex arguments, care must be taken choosing [[Branch point|branches]] of the inverse functions.)<ref>{{harvp|Masson|2021}} draws complex-valued plots of several of these, demonstrating that naïve implementations that choose the principal branch of inverse trigonometric functions yield incorrect results.</ref> We can also express <math display=inline>\psi</math> and <math display=inline>\phi</math> in terms of <math display=inline>s\colon</math> :<math>\begin{align} 2\arctan s &= \phi = \operatorname{gd} \psi, \\[6mu] 2\operatorname{artanh} s &= \operatorname{gd}^{-1} \phi = \psi. \\[6mu] \end{align}</math> If we expand <math display=inline>\tan\tfrac12</math> and <math display=inline>\tanh\tfrac12</math> in terms of the [[Exponential function#Complex plane|exponential]], then we can see that <math display=inline>s,</math> <math>\exp \phi i,</math> and <math>\exp \psi</math> are all [[Möbius transformation]]s of each-other (specifically, rotations of the [[Riemann sphere]]): :<math>\begin{align} s &= i\frac{1-e^{\phi i}}{1+e^{\phi i}} = \frac{e^\psi - 1}{e^\psi + 1}, \\[10mu] i \frac{s - i}{s + i} &= \exp \phi i \quad = \frac{e^\psi - i}{e^\psi + i}, \\[10mu] \frac{1 + s}{1 - s} &= i\frac{i+e^{\phi i}}{i-e^{\phi i}} \,= \exp \psi. \end{align}</math> For real values of <math display=inline>\psi</math> and <math display=inline>\phi</math> with <math>|\phi| < \tfrac12\pi</math>, these Möbius transformations can be written in terms of trigonometric functions in several ways, :<math>\begin{align} \exp \psi &= \sec \phi + \tan \phi = \tan\tfrac12 \bigl(\tfrac12\pi + \phi \bigr) \\[6mu] &= \frac{1 + \tan\tfrac12 \phi}{1 - \tan\tfrac12 \phi} = \sqrt{\frac{1+\sin \phi}{1-\sin \phi}}, \\[12mu] \exp \phi i &= \operatorname{sech} \psi + i \tanh \psi = \tanh\tfrac12 \bigl({-\tfrac12}\pi i + \psi \bigr) \\[6mu] &= \frac{1 + i \tanh\tfrac12 \psi}{1 - i \tanh\tfrac12 \psi} = \sqrt{\frac{1 + i \sinh \psi}{1 - i \sinh \psi}}. \end{align}</math> These give further expressions for <math>\operatorname{gd}</math> and <math>\operatorname{gd}^{-1}</math> for real arguments with <math>|\phi| < \tfrac12\pi.</math> For example,<ref name=weinstein>{{mathworld|urlname=Gudermannian|title=Gudermannian}}</ref> :<math>\begin{align} \operatorname{gd} \psi &= 2 \arctan e^\psi - \tfrac12\pi, \\[6mu] \operatorname{gd}^{-1} \phi &= \log (\sec \phi + \tan \phi). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)