Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Haber process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== History == {{main|History of the Haber process}} [[File:1908 Carl Bosch (1874-1940).jpg|thumb|upright=0.7|[[Carl Bosch]], 1927]] During the 19th century, the demand rapidly increased for nitrates and ammonia for use as fertilizers, which supply plants with the nutrients they need to grow, and for industrial feedstocks. The main source was mining [[niter]] deposits and [[guano]] from tropical islands.<ref name="Vandermeer">{{Cite book |last=Vandermeer |first=John |url={{google books |plainurl=y |id=AFRQSuQGHiIC}} |title=The Ecology of Agroecosystems |date=2011 |publisher=Jones & Bartlett Learning |isbn=978-0-7637-7153-9 |page=149}}</ref> At the beginning of the 20th century these reserves were thought insufficient to satisfy future demands,<ref>{{Cite book |last=James |first=Laylin K. |url=https://archive.org/details/isbn_9780841226906/page/118 |title=Nobel Laureates in Chemistry 1901–1992 |date=1993 |publisher=American Chemical Society |isbn=978-0-8412-2690-6 |edition=3rd |location=Washington, DC |page=[https://archive.org/details/isbn_9780841226906/page/118 118]}}</ref> and research into new potential sources of ammonia increased. Although atmospheric nitrogen (N<sub>2</sub>) is abundant, comprising ~78% of the air, it is exceptionally stable and does not readily react with other chemicals. Haber, with his assistant [[Robert Le Rossignol]]{{Citation needed|reason=One citation does not even have Roberts name in it if his trail to the lectures is followed, the other situation leads to a opinion piece by a University college london that has no citation in his claims. Claims such as working on and or during the ammonia have no citations. The idea that it was just robert and Haber working together on the project was less likely than haber having a team not a single man makes the need for more citation work. |date=November 2024}}, developed the high-pressure devices and [[catalysts]] needed to demonstrate the Haber process at a laboratory scale.<ref>{{Cite book |last=Haber |first=Fritz |url=https://archive.org/details/thermodynamikte00habegoog |title=Thermodynamik technischer Gasreaktionen |date=1905 |publisher=Salzwasser Verlag |isbn=978-3-86444-842-3 |edition=1st |location=Paderborn |language=de}}</ref><ref>{{Citation |title=Robert Le Rossignol, 1884–1976: Professional Chemist |url=http://www.ucl.ac.uk/chemistry/alumni/documents/A5booklet_020909.pdf |work=ChemUCL Newsletter |page=8 |year=2009 |archive-url=https://web.archive.org/web/20110113022251/http://www.ucl.ac.uk/chemistry/alumni/documents/A5booklet_020909.pdf |url-status=dead |archive-date=13 January 2011}}.</ref> They demonstrated their process in the summer of 1909 by producing ammonia from the air, drop by drop, at the rate of about {{convert|125|mL|USoz|sigfig=1|abbr=on}} per hour<!--a cup every two hours-->. The process was purchased by the German chemical company [[BASF]], which assigned [[Carl Bosch]] the task of scaling up Haber's tabletop machine to industrial scale.<ref name="hager" /><ref>Bosch, Carl (2 March 1908). {{US Patent|990191}}.</ref> He succeeded in 1910. Haber and Bosch were later awarded Nobel Prizes, in 1918 and 1931 respectively, for their work in overcoming the chemical and engineering problems of large-scale, continuous-flow, high-pressure technology.<ref name="hager" /> Ammonia was first manufactured using the Haber process on an industrial scale in 1913 in BASF's [[Ludwigshafen#Oppau|Oppau]] plant in Germany, reaching 20 tonnes/day in 1914.<ref name="AmSci">{{Cite journal |last=Philip |first=Phylis Morrison |year=2001 |title=Fertile Minds (Book Review of ''Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production'') |url=http://www.americanscientist.org/bookshelf/pub/from-fertile-minds |journal=American Scientist |language=en |archive-url=https://web.archive.org/web/20120702093415/http://www.americanscientist.org/bookshelf/pub/from-fertile-minds |archive-date=2 July 2012}}</ref> During [[World War I]], the production of [[munitions]] required large amounts of nitrate. The [[Allies of World War I|Allied powers]] had access to large deposits of [[sodium nitrate]] in Chile (Chile [[saltpetre]]) controlled by British companies. India had large supplies too, but it was also controlled by the British.<ref name="Brown_2011">{{cite book|last1=Brown|first1=GI|title= Explosives: History with a Bang |date=2011|publisher=The History Press |location= |isbn= 978-0752456966|page=|edition=1|url=https://books.google.com/books?id=PFM7AwAAQBAJ&dq=India,+especially+the+states+of+Bihar+and+Bengal,+was+one+of+the+largest++suppliers,+exporting+around+30,000+tons+of+saltpetre&pg=PT20}}</ref> Moreover, even if German commercial interests had nominal legal control of such resources, the Allies controlled the sea lanes and imposed a highly effective [[blockade]] which would have prevented such supplies from reaching Germany. The Haber process proved so essential to the German war effort<ref name="hager" /><ref name="ny times">{{Cite news |date=3 February 1920 |title=Nobel Award to Haber |work=[[The New York Times]] |url=https://timesmachine.nytimes.com/timesmachine/1920/02/03/118255924.pdf |url-status=dead |access-date=11 October 2010 |archive-url=https://web.archive.org/web/20210224154209/https://timesmachine.nytimes.com/timesmachine/1920/02/03/118255924.pdf |archive-date=24 February 2021}}</ref> that it is considered virtually certain Germany would have been defeated in a matter of months without it. Synthetic ammonia from the Haber process was used for the production of [[nitric acid]], a precursor to the nitrates used in explosives. The original Haber–Bosch reaction chambers used [[osmium]] as the [[catalyst]], but this was available in extremely small quantities. Haber noted that [[uranium]] was almost as effective and easier to obtain than osmium. In 1909, BASF researcher [[Alwin Mittasch]] discovered a much less expensive iron-based catalyst that is still used. A major contributor to the discovery of this catalysis was [[Gerhard Ertl]].<ref>{{Cite journal |last1=Bozso |first1=F. |last2=Ertl |first2=G. |last3=Grunze |first3=M. |last4=Weiss |first4=M. |year=1977 |title=Interaction of nitrogen with iron surfaces: I. Fe(100) and Fe(111) |journal=[[Journal of Catalysis]] |volume=49 |issue=1 |pages=18–41 |doi=10.1016/0021-9517(77)90237-8}}</ref><ref>{{Cite journal |last1=Imbihl |first1=R. |last2=Behm |first2=R. J. |last3=Ertl |first3=G. |last4=Moritz |first4=W. |year=1982 |title=The structure of atomic nitrogen adsorbed on Fe(100) |url=https://epub.ub.uni-muenchen.de/5778/1/Moritz_Wolfgang_5778.pdf |journal=[[Surface Science]] |volume=123 |issue=1 |pages=129–140 |bibcode=1982SurSc.123..129I |doi=10.1016/0039-6028(82)90135-2}}</ref><ref name="Ertl1982adsorption">{{Cite journal |last1=Ertl |first1=G. |last2=Lee |first2=S. B. |last3=Weiss |first3=M. |year=1982 |title=Kinetics of nitrogen adsorption on Fe(111) |journal=[[Surface Science]] |volume=114 |issue=2–3 |pages=515–526 |bibcode=1982SurSc.114..515E |doi=10.1016/0039-6028(82)90702-6}}</ref><ref>{{Cite journal |last=Ertl |first=G. |year=1983 |title=Primary steps in catalytic synthesis of ammonia |journal=[[Journal of Vacuum Science and Technology A]] |volume=1 |issue=2 |pages=1247–1253 |bibcode=1983JVSTA...1.1247E |doi=10.1116/1.572299}}</ref> The most popular catalysts are based on iron promoted with [[Potassium oxide|K<sub>2</sub>O]], [[Calcium oxide|CaO]], [[Silicon dioxide|SiO<sub>2</sub>]], and [[Aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]]. During the [[Interwar period|interwar years]], alternative processes were developed, most notably the Casale process, the Claude process, and the Mont-Cenis process developed by the [[Friedrich Uhde]] Ingenieurbüro.<ref>{{Cite web |title=100 years of Thyssenkrupp Uhde |url=https://www.thyssenkrupp-industrial-solutions.com/de/media/pressemitteilungen/100-jahre-thyssenkrupp-uhde |access-date=8 December 2021 |website=Industrial Solutions |language=de}}</ref> Luigi Casale and [[Georges Claude]] proposed to increase the pressure of the synthesis loop to {{convert|80|–|100|MPa|abbr=on|lk=on|bar psi}}, thereby increasing the single-pass ammonia conversion and making nearly complete liquefaction at ambient temperature feasible. Claude proposed to have three or four converters with liquefaction steps in series, thereby avoiding recycling. Most plants continue to use the original Haber process ({{convert|20|MPa|abbr=on|bar psi}} and {{convert|500|°C|°F|abbr=on}}), albeit with improved single-pass conversion and lower energy consumption due to process and catalyst optimization.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)