Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Half-integer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Notation and algebraic structure== The [[Set (mathematics)|set]] of all half-integers is often denoted <math display=block>\mathbb Z + \tfrac{1}{2} \quad = \quad \left( \tfrac{1}{2} \mathbb Z \right) \smallsetminus \mathbb Z ~.</math> The integers and half-integers together form a [[group (mathematics)|group]] under the addition operation, which may be denoted<ref>{{cite book |first=Vladimir G. |last=Turaev |year=2010 |title=Quantum Invariants of Knots and 3-Manifolds |edition=2nd |series=De Gruyter Studies in Mathematics |volume=18 |publisher=Walter de Gruyter |isbn=9783110221848 |page=390}}</ref> <math display=block>\tfrac{1}{2} \mathbb Z ~.</math> However, these numbers do not form a [[ring (mathematics)|ring]] because the product of two half-integers is not a half-integer; e.g. <math>~\tfrac{1}{2} \times \tfrac{1}{2} ~=~ \tfrac{1}{4} ~ \notin ~ \tfrac{1}{2} \mathbb Z ~.</math><ref>{{cite book |first1=George |last1=Boolos |first2=John P. |last2=Burgess |first3=Richard C. |last3=Jeffrey |year=2002 |title=Computability and Logic |page=105 |publisher=Cambridge University Press |isbn=9780521007580 |url=https://books.google.com/books?id=0LpsXQV2kXAC&pg=PA105}}</ref> The [[subring|smallest ring containing]] them is <math>\Z\left[\tfrac12\right]</math>, the ring of [[dyadic rational]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)