Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heaviside step function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Formulation== Taking the convention that {{math|''H''(0) {{=}} 1}}, the Heaviside function may be defined as: * a [[piecewise function]]: <math display="block">H(x) := \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}</math> * using the [[Iverson bracket]] notation: <math display="block">H(x) := [x \geq 0]</math> * an [[indicator function]]: <math display="block">H(x) := \mathbf{1}_{x \geq 0}=\mathbf 1_{\mathbb R_+}(x)</math> For the alternative convention that {{math|''H''(0) {{=}} {{sfrac|1|2}}}}, it may be expressed as: * a [[piecewise function]]: <math display="block">H(x) := \begin{cases} 1, & x > 0 \\ \frac{1}{2}, & x = 0 \\ 0, & x < 0 \end{cases}</math> * a [[linear transformation]] of the [[sign function]], <math display="block">H(x) := \frac{1}{2} \left(\mbox{sgn}\, x + 1\right)</math> * the [[arithmetic mean]] of two [[Iverson bracket]]s, <math display="block">H(x) := \frac{[x\geq 0] + [x>0]}{2}</math> * a [[one-sided limit]] of the [[atan2|two-argument arctangent]] <math display="block">H(x) =: \lim_{\epsilon\to0^{+}} \frac{\mbox{atan2}(\epsilon,-x)}{\pi}</math> * a [[hyperfunction]] <math display="block">H(x) =: \left(1-\frac{1}{2\pi i}\log z,\ -\frac{1}{2\pi i}\log z\right)</math> or equivalently <math display="block">H(x) =: \left( -\frac{\log -z}{2\pi i}, -\frac{\log -z}{2\pi i}\right)</math> where {{math|log ''z''}} is the [[Complex logarithm#Principal value|principal value of the complex logarithm]] of {{mvar|z}} Other definitions which are undefined at {{math|''H''(0)}} include: * a [[piecewise function]]: <math display="block">H(x) := \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}</math> * the derivative of the [[ramp function]]: <math display="block">H(x) := \frac{d}{dx} \max \{ x, 0 \}\quad \mbox{for } x \ne 0</math> * in terms of the [[absolute value]] function as <math display="block"> H(x) = \frac{x + |x|}{2x}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)