Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Heegner number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Euler's prime-generating polynomial== Euler's [[Formula for primes#Prime formulas and polynomial functions|prime-generating polynomial]] <math display=block>n^2 + n + 41,</math> which gives (distinct) primes for ''n'' = 0, ..., 39, is related to the Heegner number 163 = 4 · 41 − 1. [[George Yuri Rainich|Rabinowitsch]]<ref>[[George Yuri Rainich|Rabinovitch, Georg]] [https://babel.hathitrust.org/cgi/pt?id=miun.aag4063.0001.001;view=1up;seq=420 "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern."] Proc. Fifth Internat. Congress Math. ( Cambridge) 1, 418–421, 1913.</ref> proved that <math display=block>n^2 + n + p</math> gives primes for <math>n=0,\dots,p-2</math> if and only if this quadratic's [[discriminant]] <math>1-4p</math> is the negative of a Heegner number. (Note that <math>p-1</math> yields <math>p^2</math>, so <math>p-2</math> is maximal.) 1, 2, and 3 are not of the required form, so the Heegner numbers that work are 7, 11, 19, 43, 67, 163, yielding prime generating functions of Euler's form for 2, 3, 5, 11, 17, 41; these latter numbers are called ''[[lucky numbers of Euler]]'' by [[François Le Lionnais|F. Le Lionnais]].<ref>Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)