Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hessian matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definitions and properties == Suppose <math>f : \R^n \to \R</math> is a function taking as input a vector <math>\mathbf{x} \in \R^n</math> and outputting a scalar <math> f(\mathbf{x}) \in \R.</math> If all second-order [[partial derivative]]s of <math>f</math> exist, then the Hessian matrix <math>\mathbf{H}</math> of <math>f</math> is a square <math>n \times n</math> matrix, usually defined and arranged as <math display=block>\mathbf H_f= \begin{bmatrix} \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] \dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex] \vdots & \vdots & \ddots & \vdots \\[2.2ex] \dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.</math> That is, the entry of the {{mvar|i}}th row and the {{mvar|j}}th column is <math display=block>(\mathbf H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \, \partial x_j}.</math> If furthermore the second partial derivatives are all continuous, the Hessian matrix is a [[symmetric matrix]] by the [[symmetry of second derivatives]]. The [[determinant]] of the Hessian matrix is called the {{em|Hessian determinant}}.<ref>{{cite book|last1=Binmore|first1=Ken|author-link1=Kenneth Binmore|last2=Davies|first2=Joan|year=2007|title=Calculus Concepts and Methods|oclc=717598615|isbn=978-0-521-77541-0|publisher=Cambridge University Press|page=190}}</ref> The Hessian matrix of a function <math>f</math> is the [[Jacobian matrix]] of the [[gradient]] of the function <math>f</math>; that is: <math>\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x})).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)