Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hexadecimal
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Representation== ===Written representation=== In most current use cases, the letters AβF or aβf represent the values 10β15, while the [[Arabic numerals|numerals]] 0β9 are used to represent their decimal values. There is no universal convention to use lowercase or uppercase, so each is prevalent or preferred in particular environments by community standards or convention; even mixed case is used. Some [[seven-segment display]]s use mixed-case 'A b C d E F' to distinguish the digits AβF from one another and from 0β9. There is some standardization of using spaces (rather than commas or another punctuation mark) to separate hex values in a long list. For instance, in the following [[hex dump]], each 8-bit [[byte]] is a 2-digit hex number, with spaces between them, while the 32-bit offset at the start is an 8-digit hex number. <div class="nowrap"><syntaxhighlight lang="hexdump"> 00000000 57 69 6B 69 70 65 64 69 61 2C 20 74 68 65 20 66 00000010 72 65 65 20 65 6E 63 79 63 6C 6F 70 65 64 69 61 00000020 20 74 68 61 74 20 61 6E 79 6F 6E 65 20 63 61 6E 00000030 20 65 64 69 74 2C 20 69 6E 63 6C 75 64 69 6E 67 00000040 20 79 6F 75 20 28 61 6E 64 20 6D 65 29 21 </syntaxhighlight></div> ====Distinguishing from decimal==== In contexts where the [[radix|base]] is not clear, hexadecimal numbers can be ambiguous and confused with numbers expressed in other bases. There are several conventions for expressing values unambiguously. A numerical subscript (itself written in decimal) can give the base explicitly: 159<sub>10</sub> is decimal 159; 159<sub>16</sub> is hexadecimal 159, which equals 345<sub>10</sub>. Some authors prefer a text subscript, such as 159<sub>decimal</sub> and 159<sub>hex</sub>, or 159<sub>d</sub> and 159<sub>h</sub>. [[Donald Knuth]] introduced the use of a particular typeface to represent a particular radix in his book ''The TeXbook''.<ref>{{Cite book |last=Knuth |first=Donald Ervin |url=https://www.worldcat.org/oclc/12973034 |title=The TeXbook |date=1986 |others=Duane Bibby |isbn=0-201-13447-0 |location=Reading, Mass. |oclc=12973034 |access-date=2022-03-15 |archive-date=2022-01-16 |archive-url=https://web.archive.org/web/20220116012119/http://www.worldcat.org/oclc/12973034 |url-status=live }}</ref> Hexadecimal representations are written there in a [[Monospaced font|typewriter typeface]]: {{mono|5A3}}, {{mono|C1F27ED}} In linear text systems, such as those used in most computer programming environments, a variety of methods have arisen:<!-- * * * These are ordered from most to least likely to be encountered by lay people * * * --> * {{anchor|_nix}}Although best known from the [[C (programming language)|C programming language]] (and the many languages influenced by C), the prefix <code>0x</code> to indicate a hex constant may have had origins in the [[IBM Stretch]] systems. It is derived from the <code>0</code> prefix already in use for [[octal]] constants. Byte values can be expressed in hexadecimal with the prefix <code>\x</code> followed by two hex digits: <code>'\x1B'</code> represents the [[Escape character|Esc]] control character; <code>"\x1B[0m\x1B[25;1H"</code> is a string containing 11 characters with two embedded Esc characters.<ref>The string <code>"\x1B[0m\x1B[25;1H"</code> specifies the character sequence {{mono|Esc [ 0 m Esc [ 2 5; 1 H}}. These are the escape sequences used on an [[ANSI escape code|ANSI terminal]] that reset the character set and color, and then move the cursor to line 25.</ref> To output an integer as hexadecimal with the [[printf]] function family, the format conversion code <code>%X</code> or <code>%x</code> is used. * In [[XML]] and [[XHTML]], characters can be expressed as hexadecimal [[numeric character reference]]s using the notation <code>&#x''code'';</code>, for instance <code>&#x0054;</code> represents the character U+0054 (the uppercase letter "T"). If there is no {{code|x}} the number is decimal (thus <code>&#0084;</code> is the same character).<ref>{{cite web|url=https://www.unicode.org/charts/PDF/U2000.pdf|title=The Unicode Standard, Version 7|website=Unicode|access-date=28 October 2018|archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303175510/http://www.unicode.org/charts/PDF/U2000.pdf|url-status=live}}</ref> * {{anchor|Intel}}In Intel-derived [[assembly language]]s and Modula-2,<ref>{{cite web |title=Modula-2 β Vocabulary and representation |url=http://modula2.org/reference/vocabulary.php |website=Modula β2 |access-date=1 November 2015 |archive-date=2015-12-13 |archive-url=https://web.archive.org/web/20151213053318/http://www.modula2.org/reference/vocabulary.php |url-status=live }}</ref> hexadecimal is denoted with a suffixed {{mono|H}} or {{mono|h}}: <code>FFh</code> or <code>05A3H</code>. Some implementations require a leading zero when the first hexadecimal digit character is not a decimal digit, so one would write <code>0FFh</code> instead of <code>FFh</code>. Some other implementations (such as NASM) allow C-style numbers (<code>0x42</code>). * {{anchor|Motorola}}Other assembly languages ([[MOS Technology 6502|6502]], [[Motorola]]), [[Pascal (programming language)|Pascal]], [[Delphi (programming language)|Delphi]], some versions of [[BASIC]] ([[Commodore BASIC|Commodore]]), [[GameMaker Studio|GameMaker Language]], [[Godot (game engine)|Godot]] and [[Forth (programming language)|Forth]] use <code>$</code> as a prefix: <code>$5A3</code>, <code>$C1F27ED</code>. * Some assembly languages (Microchip) use the notation <code>H'ABCD'</code> (for ABCD<sub>16</sub>). Similarly, [[Fortran 95 language features|Fortran 95]] uses Z'ABCD'. * [[Ada (programming language)|Ada]] and [[VHDL]] enclose hexadecimal numerals in based "numeric quotes": <code>16#5A3#</code>, <code>16#C1F27ED#</code>. For bit vector constants [[VHDL]] uses the notation <code>x"5A3"</code>, <code>x"C1F27ED"</code>.<ref>{{cite web |url=https://www.fpgatutorial.com/vhdl-types-and-conversions#vhdl-assign-data |title=An Introduction to VHDL Data Types |website=FPGA Tutorial |date=10 May 2020 |access-date=2020-08-21 |archive-date=2020-08-23 |archive-url=https://web.archive.org/web/20200823094252/https://www.fpgatutorial.com/vhdl-types-and-conversions/#vhdl-assign-data |url-status=live }}</ref> * [[Verilog]] represents hexadecimal constants in the form <code>8'hFF</code>, where 8 is the number of bits in the value and FF is the hexadecimal constant. * The [[Icon (programming language)|Icon]] and [[Smalltalk]] languages use the prefix <code>16r</code>: <code>16r5A3</code> * [[PostScript]] and the [[Bourne shell]] and its derivatives denote hex with prefix <code>16#</code>: <code>16#5A3</code>, <code>16#C1F27ED</code>. * [[Common Lisp]] uses the prefixes <code>#x</code> and <code>#16r</code>. Setting the variables *read-base*<ref>{{cite web |title=*read-base* variable in Common Lisp |url=http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_bas.htm |website=CLHS |access-date=2015-01-10 |archive-date=2016-02-03 |archive-url=https://web.archive.org/web/20160203221612/http://www.lispworks.com/documentation/HyperSpec/Body/v_rd_bas.htm |url-status=live }}</ref> and *print-base*<ref>{{cite web |title=*print-base* variable in Common Lisp |url=http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_bas.htm#STprint-baseST |website=CLHS |access-date=2015-01-10 |archive-date=2014-12-26 |archive-url=https://web.archive.org/web/20141226172420/http://www.lispworks.com/documentation/HyperSpec/Body/v_pr_bas.htm#STprint-baseST |url-status=live }}</ref> to 16 can also be used to switch the reader and printer of a Common Lisp system to Hexadecimal number representation for reading and printing numbers. Thus Hexadecimal numbers can be represented without the #x or #16r prefix code, when the input or output base has been changed to 16. * [[MSX BASIC]],<ref>[http://www.atarimagazines.com/compute/issue56/107_1_MSX_IS_COMING.php MSX is Coming β Part 2: Inside MSX] {{Webarchive|url=https://web.archive.org/web/20101124111223/http://www.atarimagazines.com/compute/issue56/107_1_MSX_IS_COMING.php |date=2010-11-24 }} [[Compute!]], issue 56, January 1985, p. 52</ref> [[QuickBASIC]], [[FreeBASIC]] and [[Visual Basic]] prefix hexadecimal numbers with <code>&H</code>: <code>&H5A3</code> * [[BBC BASIC]] and [[Locomotive BASIC]] use <code>&</code> for hex.<ref>BBC BASIC programs are not fully portable to [[Microsoft BASIC]] (without modification) since the latter takes <code>&</code> to prefix [[octal]] values. (Microsoft BASIC primarily uses <code>&O</code> to prefix octal, and it uses <code>&H</code> to prefix hexadecimal, but the ampersand alone yields a default interpretation as an octal prefix.</ref> * [[TI-89]] and 92 series uses a <code>0h</code> prefix: <code>0h5A3</code>, <code>0hC1F27ED</code> * [[ALGOL 68]] uses the prefix <code>16r</code> to denote hexadecimal numbers: <code>16r5a3</code>, <code>16rC1F27ED</code>. Binary, quaternary (base-4), and octal numbers can be specified similarly. * The most common format for hexadecimal on IBM mainframes ([[zSeries]]) and midrange computers ([[IBM i]]) running the traditional OS's ([[z/OS|zOS]], [[VSE (operating system)|zVSE]], [[z/VM|zVM]], [[Transaction Processing Facility|TPF]], [[IBM i]]) is <code>X'5A3'</code> or <code>X'C1F27ED'</code>, and is used in Assembler, [[PL/I]], [[COBOL]], [[Job Control Language|JCL]], scripts, commands and other places. This format was common on other (and now obsolete) IBM systems as well. Occasionally quotation marks were used instead of apostrophes. ====Syntax that is always Hex==== Sometimes the numbers are known to be Hex. * In [[URI]]s (including [[URL]]s), [[character encoding|character codes]] are written as hexadecimal pairs prefixed with {{code|%}}: {{code|<nowiki>http://www.example.com/name%20with%20spaces</nowiki>}} where {{code|%20}} is the code for the [[Space (punctuation)#Space characters and digital typography|space (blank)]] character, [[ASCII]] code point 20 in hex, 32 in decimal. * In the [[Unicode]] standard, a character value is represented with {{code|U+}} followed by the hex value, e.g. {{code|U+00A1}} is the [[inverted exclamation point]] (Β‘). * [[Web colors|Color references]] in HTML, [[Cascading Style Sheets|CSS]] and [[X window system|X Window]] can be expressed with six hexadecimal digits (two each for the red, green and blue components, in that order) prefixed with {{code|#}}: <span style="color:#FF00FF">magenta</span>, for example, is represented as {{code|#FF00FF}}.<ref>{{cite web |url=http://www.web-colors-explained.com/hex.php |title=Hexadecimal web colors explained |access-date=2006-01-11 |archive-url=https://web.archive.org/web/20060422004336/http://www.web-colors-explained.com/hex.php |archive-date=2006-04-22 |url-status=dead }}</ref> CSS also allows 3-hexdigit abbreviations with one hexdigit per component: {{code|#FA3}} abbreviates {{code|#FFAA33}} (a golden orange: {{color box|#FA3}}). * In [[MIME]] (e-mail extensions) [[quoted-printable]] encoding, character codes are written as hexadecimal pairs prefixed with {{code|1==}}: {{code|1=Espa=F1a}} is "EspaΓ±a" (F1{{sub|hex}} is the code for ''Γ±'' in the ISO/IEC 8859-1 character set).<ref>{{Cite web |url=https://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html|title=ISO-8859-1 (ISO Latin 1) Character Encoding |website=www.ic.unicamp.br|access-date=2019-06-26|archive-date=2019-06-29 |archive-url=https://web.archive.org/web/20190629203430/http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html|url-status=live}}</ref>) * PostScript binary data (such as image [[pixel]]s) can be expressed as unprefixed consecutive hexadecimal pairs: {{code|AA213FD51B3801043FBC}} ... * Any [[IPv6 address]] can be written as eight groups of four hexadecimal digits (sometimes called [[hextet (computing)|hextet]]s), where each group is separated by a colon ({{code|:}}). This, for example, is a valid IPv6 address: {{code|2001:0db8:85a3:0000:0000:8a2e:0370:7334}} or abbreviated by removing leading zeros as {{code|2001:db8:85a3::8a2e:370:7334}} ([[IPv4 address]]es are usually written in decimal). * [[Globally unique identifier]]s are written as thirty-two hexadecimal digits, often in unequal hyphen-separated groupings, for example {{code|3F2504E0-4F89-41D3-9A0C-0305E82C3301}}. ===Other symbols for 10β15 and mostly different symbol sets=== The use of the letters ''A'' through ''F'' to represent the digits above 9 was not universal in the early history of computers. * During the 1950s, some installations, such as Bendix-14, favored using the digits 0 through 5 with an [[overline]] to denote the values {{nowrap|10β15}} as {{overline|0}}, {{overline|1}}, {{overline|2}}, {{overline|3}}, {{overline|4}} and {{overline|5}}. * The [[SWAC (computer)|SWAC]] (1950)<ref name="Savard_2018_CA"/> and [[Bendix G-15]] (1956)<ref name="Bendix"/><ref name="Savard_2018_CA"/> computers used the lowercase letters ''u'', ''v'', ''w'', ''x'', ''y'' and ''z'' for the values 10 to 15. * The [[ORDVAC]] and [[ILLIAC I]] (1952) computers (and some derived designs, e.g. [[BRLESC]]) used the uppercase letters ''K'', ''S'', ''N'', ''J'', ''F'' and ''L'' for the values 10 to 15.<ref name="Illiac-I"/><ref name="Savard_2018_CA"/> * The Librascope [[LGP-30]] (1956) used the letters ''F'', ''G'', ''J'', ''K'', ''Q'' and ''W'' for the values 10 to 15.<ref name="RP_1957_LGP-30"/><ref name="Savard_2018_CA"/> * On the [[PERM (computer)|PERM]] (1956) computer, hexadecimal numbers were written as letters ''O'' for zero, ''A'' to ''N'' and ''P'' for 1 to 15. Many machine instructions had mnemonic hex-codes (''A''=add, ''M''=multiply, ''L''=load, ''F''=fixed-point etc.); programs were written without instruction names.<ref name="PERM"/> * The [[Honeywell]] [[Datamatic D-1000]] (1957) used the lowercase letters ''b'', ''c'', ''d'', ''e'', ''f'', and ''g'' whereas the [[Elbit]] 100 (1967) used the uppercase letters ''B'', ''C'', ''D'', ''E'', ''F'' and ''G'' for the values 10 to 15.<ref name="Savard_2018_CA"/> * The [[Monrobot XI]] (1960) used the letters ''S'', ''T'', ''U'', ''V'', ''W'' and ''X'' for the values 10 to 15.<ref name="Savard_2018_CA"/> * The [[NEC]] [[parametron]] computer NEAC 1103 (1960) used the letters ''D'', ''G'', ''H'', ''J'', ''K'' (and possibly ''V'') for values 10β15.<ref name="NEC_1960_NEAC-1103">{{cite book |title=NEC Parametron Digital Computer Type NEAC-1103 |publisher=[[Nippon Electric Company Ltd.]] |location=Tokyo, Japan |id=Cat. No. 3405-C |date=1960 |url=http://archive.computerhistory.org/resources/text/NEC/NEC.1103.1958102646285.pdf |access-date=2017-05-31 |url-status=live |archive-url=https://web.archive.org/web/20170531112850/http://archive.computerhistory.org/resources/text/NEC/NEC.1103.1958102646285.pdf |archive-date=2017-05-31}}</ref> * The [[Pacific Data Systems]] 1020 (1964) used the letters ''L'', ''C'', ''A'', ''S'', ''M'' and ''D'' for the values 10 to 15.<ref name="Savard_2018_CA"/> [[File:Table_de_correspondance_entre_le_Bibinaire_et_les_autres_notations.svg|thumb|[[Bibi-binary]]]] * New numeric symbols and names were introduced in the [[Bibi-binary]] notation by [[Boby Lapointe]] in 1968. [[Image:Bruce Martin hexadecimal notation proposal.png|thumb|Bruce Alan Martin's hexadecimal notation proposal<ref name="Martin_1968"/>]] * Bruce Alan Martin of [[Brookhaven National Laboratory]] considered the choice of AβF "ridiculous". In a 1968 letter to the editor of the [[Communications of the ACM|CACM]], he proposed an entirely new set of symbols based on the bit locations.<ref name="Martin_1968">{{cite journal | title=Letters to the editor: On binary notation | first=Bruce Alan | last=Martin | publisher=[[Associated Universities Inc.]] | journal=[[Communications of the ACM]] | volume=11 | issue=10 | date=October 1968 | page=658 | doi=10.1145/364096.364107| s2cid=28248410 | doi-access=free }}</ref> [[File:Base-16 digits.svg|thumb|Ronald O. Whitaker's hexadecimal notation proposal.<ref name="Whitaker_1972"/><ref name="Whitaker_1975"/>]] * In 1972, Ronald O. Whitaker of Rowco Engineering Co. proposed a triangular font that allows "direct binary reading" to "permit both input and output from computers without respect to encoding matrices."<ref name="Whitaker_1972">{{cite news |title=More on man/machine |department=Letters |author-first=Ronald O. |author-last=Whitaker |journal=[[Datamation]] |publisher=[[Technical Publishing Company]] |location=Indianapolis, Indiana, US |publication-place=Barrington, Illinois, US |date=January 1972 |volume=18 |number=1 |page=103 |url=http://www.bitsavers.org/magazines/Datamation/197201.pdf |access-date=2022-12-24 |url-status=live |archive-url=https://web.archive.org/web/20221205110246/http://www.bitsavers.org/magazines/Datamation/197201.pdf |archive-date=2022-12-05}} (1 page)</ref><ref name="Whitaker_1975">{{cite web |title=Combined display and range selector for use with digital instruments employing the binary numbering system |author-first=Ronald O. |author-last=Whitaker |id=US Patent 3974444A |location=Indianapolis, Indiana, US |date=1976-08-10 |orig-date=1975-02-24 |url=https://patentimages.storage.googleapis.com/88/54/da/d88ca78fe93623/US3974444.pdf |access-date=2022-12-24 |url-status=live |archive-url=https://web.archive.org/web/20221224135846/https://patentimages.storage.googleapis.com/88/54/da/d88ca78fe93623/US3974444.pdf |archive-date=2022-12-24}} (7 pages)</ref> * Some [[seven-segment display]] decoder chips (i.e., 74LS47) show unexpected output due to logic designed only to produce 0β9 correctly.<ref>{{Cite web |title=SN5446A, '47A, '48, SN54LS47, 'LS48, 'LS49, SN7446A, '47A, '48, SN74LS47, 'LS48, 'LS49 BCD-to-Seven-Segment Decoders/Drivers |publisher=[[Texas Instruments Incorporated]] |date=March 1988 |orig-date=1974 |id=SDLS111 |publication-place=Dallas, Texas, US |url-status=live |url=https://www.ti.com/lit/gpn/sn74ls47 |access-date=2021-09-15 |archive-url=https://web.archive.org/web/20211020192609/https://www.ti.com/lit/ds/symlink/sn74ls47.pdf?ts=1634757966777 |archive-date=2021-10-20}} (29 pages)</ref> ===Verbal and digital representations=== [[File:Hexadecimal-counting.jpg|right|thumb|Hexadecimal finger-counting scheme]] Since there were no traditional numerals to represent the quantities from ten to fifteen, alphabetic letters were re-employed as a substitute. Most European languages lack non-decimal-based words for some of the numerals eleven to fifteen. Some people read hexadecimal numbers digit by digit, like a phone number, or using the [[ICAO spelling alphabet|NATO phonetic alphabet]], the [[Joint Army/Navy Phonetic Alphabet]], or a similar ''ad-hoc'' system. In the wake of the adoption of hexadecimal among [[IBM System/360]] programmers, Magnuson (1968)<ref name=Magnuson-1968-01/> suggested a pronunciation guide that gave short names to the letters of hexadecimal β for instance, "A" was pronounced "ann", B "bet", C "chris", etc.<ref name=Magnuson-1968-01>{{cite magazine |last1=Magnuson |first1=Robert A. |title=A hexadecimal pronunciation guide |magazine=Datamation |date=January 1968 |volume=14 |issue=1 |page=45}}</ref> Another naming-system was published online by Rogers (2007)<ref name=Rogers-2007>{{cite web |first=S.R. |last=Rogers |year=2007 |title=Hexadecimal number words |website=Intuitor |language=en-US |url=http://www.intuitor.com/hex/words.html |access-date=2019-08-26 |archive-date=2019-09-17 |archive-url=https://web.archive.org/web/20190917015855/http://www.intuitor.com/hex/words.html |url-status=live }}</ref> that tries to make the verbal representation distinguishable in any case, even when the actual number does not contain numbers AβF. Examples are listed in the tables below. Yet another naming system was elaborated by Babb (2015), based on a joke in ''[[Silicon Valley (TV series)|Silicon Valley]]''.<ref name=Babb-2015>{{cite web |first=Tim |last=Babb |year=2015 |url=https://www.bzarg.com/p/how-to-pronounce-hexadecimal/ |title=How to pronounce hexadecimal |website=Bzarg |language=en-US |access-date=2021-01-01 |archive-date=2020-11-11 |archive-url=https://web.archive.org/web/20201111174319/https://www.bzarg.com/p/how-to-pronounce-hexadecimal/ |url-status=live }}</ref> The system proposed by Babb was further improved by Atkins-Bittner in 2015-2016.<ref name="Atkins-Bittner 2015">{{cite web|first=Tab|last=Atkins-Bittner|year=2015|title=How to Pronounce Hexadecimal Numbers|website=xanthir.com|language=en-US|url=https://www.xanthir.com/b4ej0|access-date=2025-01-08}}</ref> Others have proposed using the verbal Morse Code conventions to express four-bit hexadecimal digits, with "dit" and "dah" representing zero and one, respectively, so that "0000" is voiced as "dit-dit-dit-dit" (....), dah-dit-dit-dah (-..-) voices the digit with a value of nine, and "dah-dah-dah-dah" (----) voices the hexadecimal digit for decimal 15. Systems of counting on [[Digit (anatomy)|digits]] have been devised for both binary and hexadecimal. [[Arthur C. Clarke]] suggested using each finger as an on/off bit, allowing finger counting from zero to 1023<sub>10</sub> on ten fingers.<ref>{{cite book |last1=Clarke |first1=Arthur |last2=Pohl |first2=Frederik |title=The Last Theorem |url=https://archive.org/details/lasttheorem00clar |url-access=registration |date=2008 |publisher=Ballantine |isbn=978-0007289981 |page=[https://archive.org/details/lasttheorem00clar/page/91 91]}}</ref> Another system for counting up to FF<sub>16</sub> (255<sub>10</sub>) is illustrated on the right. {| class="wikitable" style="display: inline-table; margin-right: 50px;; text-align:right;" |+ Magnuson (1968)<ref name=Magnuson-1968-01/><br />naming method ! Number !! Pronunciation !! Decimal Value |- | A || ann || 10 |- | B || bet || 11 |- | C || chris || 12 |- | D || dot || 13 |- | E || ernest || 14 |- | F || frost || 15 |- | 1A || annteen || 26 |- | A0 || annty || 160 |- | 5B || fifty-bet || 91 |- | A,01C || annty christeen || 40,990 |- | 1,AD0 || annteen dotty || 6,864 |- | 3,A7D || thirty-ann seventy-dot || 14,973 |} {| class="wikitable" style="display: inline-table; margin-right: 50px;; text-align:right;" |+ Rogers (2007)<ref name=Rogers-2007/><br /> naming method ! Number !! Pronunciation !! Decimal Value |- | A || ten || 10 |- | B || eleven || 11 |- | C || twelve || 12 |- | D || draze || 13 |- | E || eptwin || 14 |- | F || fim || 15 |- | 10 || tex || 16 |- | 11 || oneteek || 17 |- | 1F || fimteek || 31 |- | 50 || fiftek || 80 |- | C0 || twelftek || 192 |- | 100 || hundrek || 256 |- | 1,000 || thousek || 4,096 |- | 3E || thirtek-eptwin || 62 |- | E1 || eptek-one || 225 |- | C4A || twelve-hundrek-fourtek-ten || 3,146 |- | 1,743 || one-thousek-seven-<br />-hundrek-fourtek-three || 5,955 |} {| class="wikitable" style="display: inline-table; margin-right: 50px;; text-align:right;" |+ Atkins-Bittner (2015){{R|"Atkins-Bittner 2015"}}<br /> naming method |- style="font-weight:bold; text-align:center;" ! Number ! Pronunciation ! Decimal Value |- | A | ae | 10 |- | B | bee | 11 |- | C | cee | 12 |- | D | dee | 13 |- | E | ee | 14 |- | F | eff | 15 |- | A0 | atta | 160 |- | B0 | bitta | 176 |- | C0 | citta | 192 |- | D0 | dickety | 208 |- | E0 | eckity | 224 |- | F0 | fleventy | 240 |- | 1A | abteen | 26 |- | 1B | bibteen | 27 |- | 1C | cibteen | 28 |- | 1D | dibbleteen | 29 |- | 1E | ebbleteen | 30 |- | 1F | fleventeen | 31 |- | 100 | one bitey | 256 |- | 10,000 | one millby | 65,536 |- | 100,000,000 | one billby | 4,294,967,296 |} ===Signs=== The hexadecimal system can express negative numbers the same way as in decimal: β2A to represent β42<sub>10</sub>, βB01D9 to represent β721369<sub>10</sub> and so on. Hexadecimal can also be used to express the exact bit patterns used in the [[central processing unit|processor]], so a sequence of hexadecimal digits may represent a [[signedness|signed]] or even a [[floating-point arithmetic|floating-point]] value. This way, the negative number β42<sub>10</sub> can be written as FFFF FFD6 in a 32-bit [[Processor register|CPU register]] (in [[two's complement]]), as C228 0000 in a 32-bit [[Floating-point unit|FPU]] register or C045 0000 0000 0000 in a 64-bit FPU register (in the [[IEEE floating-point standard]]). ===Hexadecimal exponential notation=== Just as decimal numbers can be represented in [[exponential notation]], so too can hexadecimal numbers. [[P notation]] uses the letter ''P'' (or ''p'', for "power"), whereas ''E'' (or ''e'') serves a similar purpose in decimal [[E notation]]. The number after the ''P'' is ''decimal'' and represents the ''binary'' exponent. Increasing the exponent by 1 multiplies by 2, not 16: {{mono|1=20p0 = 10p1 = 8p2 = 4p3 = 2p4 = 1p5}}. Usually, the number is normalized so that the hexadecimal digits start with {{mono|1.}} (zero is usually {{mono|0}} with no ''P''). Example: {{mono|1.3DEp42}} represents {{math|1.3DE<sub>16</sub>βΓβ2<sup>42<sub>10</sub></sup>}}. P notation is required by the [[IEEE 754-2008]] binary floating-point standard and can be used for floating-point literals in the [[C99]] edition of the [[C (programming language)|C programming language]].<ref>{{cite web |url=http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237 |title=ISO/IEC 9899:1999 β Programming languages β C |publisher=Iso.org |website=ISO |date=2011-12-08 |access-date=2014-04-08 |archive-date=2016-10-10 |archive-url=https://web.archive.org/web/20161010112929/http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=29237 |url-status=live }}</ref> Using the ''%a'' or ''%A'' conversion specifiers, this notation can be produced by implementations of the ''[[printf]]'' family of functions following the C99 specification<ref name="Rationale_2003_C">{{cite web |title=Rationale for International Standard β Programming Languages β C |version=5.10 |date=April 2003 |pages=52, 153β154, 159 |url=http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf |website=Open Standards |access-date=2010-10-17 |url-status=live |archive-url=https://web.archive.org/web/20160606072228/http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf |archive-date=2016-06-06}}</ref> and [[Single UNIX Specification|Single Unix Specification]] (IEEE Std 1003.1) [[POSIX]] standard.<ref name="printf_2013">{{cite web |title=dprintf, fprintf, printf, snprintf, sprintf β print formatted output |work=The Open Group Base Specifications |edition=Issue 7, IEEE Std 1003.1, 2013 |date=2013 |orig-year=2001 |author=The IEEE and The Open Group |url=http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html |access-date=2016-06-21 |url-status=live |archive-url=https://web.archive.org/web/20160621211105/http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html |archive-date=2016-06-21}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)