Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Highly composite number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== The first 41 highly composite numbers are listed in the table below {{OEIS|id=A002182}}. The number of divisors is given in the column labeled ''d''(''n''). Asterisks indicate [[superior highly composite numbers]]. {| class="wikitable" style="text-align:left" |- ! Order ! HCN<br />''n'' ! prime<br /> factorization ! prime<br />exponents ! number<br />of prime<br />factors ! {{abbr|''d''(''n'')|number of divisors of n}} ! primorial<br /> factorization |- | 1 | [[1 (number)|1]] | | | 0 | 1 | |- | 2 | [[2 (number)|2]]* | <math>2</math> |1 | 1 | 2 | <math>2</math> |- | 3 | [[4 (number)|4]] | <math>2^2</math> |2 | 2 | 3 | <math>2^2</math> |- | 4 | [[6 (number)|6]]* | <math>2\cdot 3</math> |1,1 | 2 | 4 | <math>6</math> |- | 5 | [[12 (number)|12]]* | <math>2^2\cdot 3</math> |2,1 | 3 | 6 | <math>2\cdot 6</math> |- | 6 | [[24 (number)|24]] | <math>2^3\cdot 3</math> |3,1 | 4 | 8 | <math>2^2\cdot 6</math> |- | 7 | [[36 (number)|36]] | <math>2^2\cdot 3^2</math> |2,2 | 4 | 9 | <math>6^2</math> |- | 8 | [[48 (number)|48]] | <math>2^4\cdot 3</math> |4,1 | 5 | 10 | <math>2^3\cdot 6</math> |- | 9 | [[60 (number)|60]]* | <math>2^2\cdot 3\cdot 5</math> |2,1,1 | 4 | 12 | <math>2\cdot 30</math> |- | 10 | [[120 (number)|120]]* | <math>2^3\cdot 3\cdot 5</math> |3,1,1 | 5 | 16 | <math>2^2\cdot 30</math> |- | 11 | [[180 (number)|180]] | <math>2^2\cdot 3^2\cdot 5</math> |2,2,1 | 5 | 18 | <math>6\cdot 30</math> |- | 12 | [[240 (number)|240]] | <math>2^4\cdot 3\cdot 5</math> |4,1,1 | 6 | 20 | <math>2^3\cdot 30</math> |- | 13 | [[360 (number)|360]]* | <math>2^3\cdot 3^2\cdot 5</math> |3,2,1 | 6 | 24 | <math>2\cdot 6\cdot 30</math> |- | 14 | [[720 (number)|720]] |<math>2^4\cdot 3^2\cdot 5</math> |4,2,1 | 7 | 30 | <math>2^2\cdot 6\cdot 30</math> |- | 15 | [[840 (number)|840]] | <math>2^3\cdot 3\cdot 5\cdot 7</math> |3,1,1,1 | 6 | 32 | <math>2^2\cdot 210</math> |- | 16 | 1260 | <math>2^2\cdot 3^2\cdot 5\cdot 7</math> |2,2,1,1 | 6 | 36 | <math>6\cdot 210</math> |- | 17 | 1680 | <math>2^4\cdot 3\cdot 5\cdot 7</math> |4,1,1,1 | 7 | 40 | <math>2^3\cdot 210</math> |- | 18 | [[2520 (number)|2520]]* | <math>2^3\cdot 3^2\cdot 5\cdot 7</math> |3,2,1,1 | 7 | 48 | <math>2\cdot 6\cdot 210</math> |- | 19 | [[5040 (number)|5040]]* | <math>2^4\cdot 3^2\cdot 5\cdot 7</math> |4,2,1,1 | 8 | 60 | <math>2^2\cdot 6\cdot 210</math> |- | 20 | 7560 | <math>2^3\cdot 3^3\cdot 5\cdot 7</math> |3,3,1,1 | 8 | 64 | <math>6^2\cdot 210</math> |- | 21 | 10080 | <math>2^5\cdot 3^2\cdot 5\cdot 7</math> |5,2,1,1 | 9 | 72 | <math>2^3\cdot 6\cdot 210</math> |- | 22 | 15120 | <math>2^4\cdot 3^3\cdot 5\cdot 7</math> |4,3,1,1 | 9 | 80 | <math>2\cdot 6^2\cdot 210</math> |- | 23 | 20160 | <math>2^6\cdot 3^2\cdot 5\cdot 7</math> |6,2,1,1 | 10 | 84 | <math>2^4\cdot 6\cdot 210</math> |- | 24 | 25200 | <math>2^4\cdot 3^2\cdot 5^2\cdot 7</math> |4,2,2,1 | 9 | 90 | <math>2^2\cdot 30\cdot 210</math> |- | 25 | 27720 | <math>2^3\cdot 3^2\cdot 5\cdot 7\cdot 11</math> |3,2,1,1,1 | 8 | 96 | <math>2\cdot 6\cdot 2310</math> |- | 26 | 45360 | <math>2^4\cdot 3^4\cdot 5\cdot 7</math> |4,4,1,1 | 10 | 100 | <math>6^3\cdot 210</math> |- | 27 | 50400 | <math>2^5\cdot 3^2\cdot 5^2\cdot 7</math> |5,2,2,1 | 10 | 108 | <math>2^3\cdot 30\cdot 210</math> |- | 28 | 55440* | <math>2^4\cdot 3^2\cdot 5\cdot 7\cdot 11</math> |4,2,1,1,1 | 9 | 120 | <math>2^2\cdot 6\cdot 2310</math> |- | 29 | 83160 | <math>2^3\cdot 3^3\cdot 5\cdot 7\cdot 11</math> |3,3,1,1,1 | 9 | 128 | <math>6^2\cdot 2310</math> |- | 30 | 110880 | <math>2^5\cdot 3^2\cdot 5\cdot 7\cdot 11</math> |5,2,1,1,1 | 10 | 144 | <math>2^3\cdot 6\cdot 2310</math> |- | 31 | 166320 | <math>2^4\cdot 3^3\cdot 5\cdot 7\cdot 11</math> |4,3,1,1,1 | 10 | 160 | <math>2\cdot 6^2\cdot 2310</math> |- | 32 | 221760 | <math>2^6\cdot 3^2\cdot 5\cdot 7\cdot 11</math> |6,2,1,1,1 | 11 | 168 | <math>2^4\cdot 6\cdot 2310</math> |- | 33 | 277200 | <math>2^4\cdot 3^2\cdot 5^2\cdot 7\cdot 11</math> |4,2,2,1,1 | 10 | 180 | <math>2^2\cdot 30\cdot 2310</math> |- | 34 | 332640 | <math>2^5\cdot 3^3\cdot 5\cdot 7\cdot 11</math> |5,3,1,1,1 | 11 | 192 | <math>2^2\cdot 6^2\cdot 2310</math> |- | 35 | 498960 | <math>2^4\cdot 3^4\cdot 5\cdot 7\cdot 11</math> |4,4,1,1,1 | 11 | 200 | <math>6^3\cdot 2310</math> |- | 36 | 554400 | <math>2^5\cdot 3^2\cdot 5^2\cdot 7\cdot 11</math> |5,2,2,1,1 | 11 | 216 | <math>2^3\cdot 30\cdot 2310</math> |- | 37 | 665280 | <math>2^6\cdot 3^3\cdot 5\cdot 7\cdot 11</math> |6,3,1,1,1 | 12 | 224 | <math>2^3\cdot 6^2\cdot 2310</math> |- | 38 | 720720* | <math>2^4\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13</math> |4,2,1,1,1,1 | 10 | 240 | <math>2^2\cdot 6\cdot 30030</math> |- | 39 | 1081080 | <math>2^3\cdot 3^3\cdot 5\cdot 7\cdot 11\cdot 13</math> |3,3,1,1,1,1 | 10 | 256 | <math>6^2\cdot 30030</math> |- | 40 | 1441440* | <math>2^5\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13</math> | 5,2,1,1,1,1 | 11 | 288 | <math>2^3\cdot 6\cdot 30030</math> |- | 41 | 2162160 | <math>2^4\cdot 3^3\cdot 5\cdot 7\cdot 11\cdot 13</math> | 4,3,1,1,1,1 | 11 | 320 | <math>2\cdot 6^2\cdot 30030</math> |} The divisors of the first 20 highly composite numbers are shown below. {| class="wikitable" ! ''n'' !! {{abbr|''d''(''n'')|number of divisors of n}} !! Divisors of ''n'' |- | 1 || 1 || 1 |- | 2 || 2 || 1, 2 |- | 4 || 3 || 1, 2, 4 |- | 6 || 4 || 1, 2, 3, 6 |- | 12 || 6 || 1, 2, 3, 4, 6, 12 |- | 24 || 8 || 1, 2, 3, 4, 6, 8, 12, 24 |- | 36 || 9 || 1, 2, 3, 4, 6, 9, 12, 18, 36 |- | 48 || 10 || 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 |- | 60 || 12 || 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 |- | 120 || 16 || 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 |- | 180 || 18 || 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 |- | 240 || 20 || 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 |- | 360 || 24 || 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 |- | 720 || 30 || 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 |- | 840 || 32 || 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840 |- | 1260 || 36 || 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260 |- | 1680 || 40 || 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680 |- | 2520 || 48 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520 |- | 5040 || 60 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040 |- | 7560 || 64 || 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 27, 28, 30, 35, 36, 40, 42, 45, 54, 56, 60, 63, 70, 72, 84, 90, 105, 108, 120, 126, 135, 140, 168, 180, 189, 210, 216, 252, 270, 280, 315, 360, 378, 420, 504, 540, 630, 756, 840, 945, 1080, 1260, 1512, 1890, 2520, 3780, 7560 |} The table below shows all 72 divisors of 10080 by writing it as a product of two numbers in 36 different ways. {| class="wikitable" style="text-align:center;table-layout:fixed;" |- |colspan="6"| <big>'''The highly composite number: 10080'''</big> <br /> 10080 = (2 Γ 2 Γ 2 Γ 2 Γ 2) Γ (3 Γ 3) Γ 5 Γ 7 |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|'''1'''<br />Γ<br />'''10080''' |style="line-height:1.4"| '''2''' <br /> Γ <br /> ''' 5040''' |style="line-height:1.4"| 3 <br /> Γ <br /> 3360 |style="line-height:1.4"| '''4''' <br /> Γ <br /> ''' 2520''' |style="line-height:1.4"| 5 <br /> Γ <br /> 2016 |style="line-height:1.4"| '''6''' <br /> Γ <br /> ''' 1680''' |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|7<br />Γ <br /> 1440 |style="line-height:1.4"| 8 <br /> Γ <br /> ''' 1260''' |style="line-height:1.4"| 9 <br /> Γ <br /> 1120 |style="line-height:1.4"| 10 <br /> Γ <br /> 1008 |style="line-height:1.4"| '''12''' <br /> Γ <br /> ''' 840''' |style="line-height:1.4"| 14 <br /> Γ <br /> ''' 720''' |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|15<br />Γ<br /> 672 |style="line-height:1.4"| 16 <br /> Γ <br /> 630 |style="line-height:1.4"| 18 <br /> Γ <br /> 560 |style="line-height:1.4"| 20 <br /> Γ <br /> 504 |style="line-height:1.4"| 21 <br /> Γ <br /> 480 |style="line-height:1.4"| '''24''' <br /> Γ <br /> 420 |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|28<br />Γ<br /> ''' 360''' |style="line-height:1.4"| 30 <br /> Γ <br /> 336 |style="line-height:1.4"| 32 <br /> Γ <br /> 315 |style="line-height:1.4"| 35 <br /> Γ <br /> 288 |style="line-height:1.4"| '''36''' <br /> Γ <br /> 280 |style="line-height:1.4"| 40 <br /> Γ <br /> 252 |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|42<br />Γ<br /> ''' 240''' |style="line-height:1.4"| 45 <br /> Γ <br /> 224 |style="line-height:1.4"| '''48''' <br /> Γ <br /> 210 |style="line-height:1.4"| 56 <br /> Γ <br /> ''' 180''' |style="line-height:1.4"| '''60''' <br /> Γ <br /> 168 |style="line-height:1.4"| 63 <br /> Γ <br /> 160 |- style="color:#000000;background:#ffffff;" |style="line-height:1.4" height=64|70<br />Γ<br /> 144 |style="line-height:1.4"| 72 <br /> Γ <br /> 140 |style="line-height:1.4"| 80 <br /> Γ <br /> 126 |style="line-height:1.4"| 84 <br /> Γ <br /> ''' 120''' |style="line-height:1.4"| 90 <br /> Γ <br /> 112 |style="line-height:1.4"| 96 <br /> Γ <br /> 105 |- |colspan="6"|'''''Note: ''''' Numbers in '''bold''' are themselves '''highly composite numbers'''. <br /> Only the twentieth highly composite number 7560 (= 3 Γ 2520) is absent.<br />10080 is a so-called [[Smooth number|7-smooth number]] ''{{OEIS|id=A002473}}''. |} The 15,000th highly composite number can be found on Achim Flammenkamp's website. It is the product of 230 primes: : <math>a_0^{14} a_1^9 a_2^6 a_3^4 a_4^4 a_5^3 a_6^3 a_7^3 a_8^2 a_9^2 a_{10}^2 a_{11}^2 a_{12}^2 a_{13}^2 a_{14}^2 a_{15}^2 a_{16}^2 a_{17}^2 a_{18}^{2} a_{19} a_{20} a_{21}\cdots a_{229},</math> where <math>a_n</math> is the <math>n</math>th successive prime number, and all omitted terms (''a''<sub>22</sub> to ''a''<sub>228</sub>) are factors with exponent equal to one (i.e. the number is <math>2^{14} \times 3^{9} \times 5^6 \times \cdots \times 1451</math>). More concisely, it is the product of seven distinct primorials: : <math>b_0^5 b_1^3 b_2^2 b_4 b_7 b_{18} b_{229},</math> where <math>b_n</math> is the [[primorial]] <math>a_0a_1\cdots a_n</math>.<ref>{{citation | last = Flammenkamp | first = Achim | title = Highly Composite Numbers | url = http://wwwhomes.uni-bielefeld.de/achim/highly.html}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)