Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hodge star operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Formal definition for ''k''-vectors == Let {{math|''V''}} be an [[Dimension (vector space)|{{math|''n''}}-dimensional]] [[orientation (mathematics)|oriented]] [[vector space]] with a nondegenerate symmetric bilinear form <math>\langle \cdot,\cdot \rangle</math>, referred to here as a scalar product. (In more general contexts such as pseudo-Riemannian manifolds and [[Minkowski space]], the bilinear form may not be positive-definite.) This induces a [[Exterior algebra#Inner product|scalar product]] on [[Multivector|{{math|''k''}}-vectors]] {{nowrap|<math display="inline">\alpha, \beta\in \bigwedge^{\!k}V</math>,}} for <math>0 \le k \le n</math>, by defining it on simple {{math|''k''}}-vectors <math>\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k</math> and <math>\beta = \beta_1 \wedge \cdots \wedge \beta_k</math> to equal the [[Gram determinant]]<ref name="HF">[[Harley Flanders]] (1963) ''Differential Forms with Applications to the Physical Sciences'', [[Academic Press]]</ref>{{rp|14}} : <math> \langle \alpha, \beta \rangle = \det \left( \left\langle \alpha_i, \beta_j \right\rangle _{i,j=1}^k\right)</math> extended to <math display="inline">\bigwedge^{\!k}V</math> through linearity. The unit {{math|''n''}}-vector <math>\omega\in{\textstyle\bigwedge}^{\!n}V</math> is defined in terms of an oriented [[orthonormal basis]] <math>\{e_1,\ldots,e_n\}</math> of {{math|''V''}} as: : <math>\omega := e_1\wedge\cdots\wedge e_n.</math> (Note: In the general pseudo-Riemannian case, orthonormality means <math> \langle e_i,e_j\rangle \in\{\delta_{ij},-\delta_{ij}\}</math> for all pairs of basis vectors.) The '''Hodge star operator''' is a linear operator on the [[exterior algebra]] of {{math|''V''}}, mapping {{math|''k''}}-vectors to ({{math|''n'' β ''k''}})-vectors, for <math>0 \le k \le n</math>. It has the following property, which defines it completely:<ref name="HF" />{{rp|15}} : <math>\alpha \wedge ({\star} \beta) = \langle \alpha,\beta \rangle \,\omega </math> for all {{math|''k''}}-vectors <math>\alpha,\beta\in {\textstyle\bigwedge}^{\!k}V .</math> Dually, in the space <math>{\textstyle\bigwedge}^{\!n}V^*</math> of {{math|''n''}}-forms (alternating {{math|''n''}}-multilinear functions on <math>V^n</math>), the dual to <math>\omega</math> is the [[volume form]] <math>\det</math>, the function whose value on <math>v_1\wedge\cdots\wedge v_n</math> is the [[determinant]] of the <math>n\times n</math> matrix assembled from the column vectors of <math>v_j</math> in <math>e_i</math>-coordinates. Applying <math>\det</math> to the above equation, we obtain the dual definition: : <math>\det(\alpha \wedge {\star} \beta) = \langle \alpha,\beta \rangle </math> for all {{math|''k''}}-vectors <math>\alpha,\beta\in {\textstyle\bigwedge}^{\!k}V .</math> Equivalently, taking <math>\alpha = \alpha_1 \wedge \cdots \wedge \alpha_k</math>, <math>\beta = \beta_1 \wedge \cdots \wedge \beta_k</math>, and <math>{\star}\beta = \beta_1^\star \wedge \cdots \wedge \beta_{n-k}^\star</math>: : <math> \det\left(\alpha_1\wedge \cdots \wedge\alpha_k\wedge\beta_1^\star\wedge \cdots \wedge\beta_{n-k}^\star\right) \ = \ \det\left(\langle\alpha_i, \beta_j\rangle\right). </math> This means that, writing an orthonormal basis of {{math|''k''}}-vectors as <math>e_I \ = \ e_{i_1}\wedge\cdots\wedge e_{i_k}</math> over all subsets <math>I = \{i_1<\cdots<i_k\}</math> of <math>[n]=\{1,\ldots,n\}</math>, the Hodge dual is the ({{math|''n β k''}})-vector corresponding to the complementary set <math>\bar{I} = [n] \smallsetminus I = \left\{\bar i_1 < \cdots < \bar i_{n-k}\right\}</math>: : <math>{\star} e_I = s\cdot t\cdot e_\bar{I} ,</math> where <math>s\in\{1,-1\}</math> is the [[Parity of a permutation|sign]] of the permutation <math>i_1 \cdots i_k \bar i_1 \cdots \bar i_{n-k}</math> and <math>t\in\{1,-1\}</math> is the product <math>\langle e_{i_1},e_{i_1}\rangle\cdots \langle e_{i_k},e_{i_k}\rangle</math>. In the Riemannian case, <math>t=1</math>. Since Hodge star takes an orthonormal basis to an orthonormal basis, it is an [[isometry]] on the exterior algebra <math display="inline">\bigwedge V</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)