Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperperfect number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==List of hyperperfect numbers== The following table lists the first few {{mvar|k}}-hyperperfect numbers for some values of {{mvar|k}}, together with the sequence number in the [[On-Line Encyclopedia of Integer Sequences]] (OEIS) of the sequence of {{mvar|k}}-hyperperfect numbers: {| class="wikitable mw-collapsible mw-collapsed" |+ class="nowrap" | List of some known {{mvar|k}}-hyperperfect numbers |- ! {{mvar|k}} !! {{mvar|k}}-hyperperfect numbers !! OEIS |- ! 1 | 6, 28, 496, 8128, 33550336, ... || {{OEIS2C|A000396}} |- ! 2 | 21, 2133, 19521, 176661, 129127041, ... || {{OEIS2C|A007593}} |- ! 3 | 325, ... || |- ! 4 | 1950625, 1220640625, ... || |- ! 6 | 301, 16513, 60110701, 1977225901, ... || {{OEIS2C|A028499}} |- ! 10 | 159841, ... || |- ! 11 | 10693, ... || |- ! 12 | 697, 2041, 1570153, 62722153, 10604156641, 13544168521, ... || {{OEIS2C|A028500}} |- ! 18 | 1333, 1909, 2469601, 893748277, ... || {{OEIS2C|A028501}} |- ! 19 | 51301, ... || |- ! 30 | 3901, 28600321, ... || |- ! 31 | 214273, ... || |- ! 35 | 306181, ... || |- ! 40 | 115788961, ... || |- ! 48 | 26977, 9560844577, ... || |- ! 59 | 1433701, ... || |- ! 60 | 24601, ... || |- ! 66 | 296341, ... || |- ! 75 | 2924101, ... || |- ! 78 | 486877, ... || |- ! 91 | 5199013, ... || |- ! 100 | 10509080401, ... || |- ! 108 | 275833, ... || |- ! 126 | 12161963773, ... || |- ! 132 | 96361, 130153, 495529, ... || |- ! 136 | 156276648817, ... || |- ! 138 | 46727970517, 51886178401, ... || |- ! 140 | 1118457481, ... || |- ! 168 | 250321, ... || |- ! 174 | 7744461466717, ... || |- ! 180 | 12211188308281, ... || |- ! 190 | 1167773821, ... || |- ! 192 | 163201, 137008036993, ... || |- ! 198 | 1564317613, ... || |- ! 206 | 626946794653, 54114833564509, ... || |- ! 222 | 348231627849277, ... || |- ! 228 | 391854937, 102744892633, 3710434289467, ... || |- ! 252 | 389593, 1218260233, ... || |- ! 276 | 72315968283289, ... || |- ! 282 | 8898807853477, ... || |- ! 296 | 444574821937, ... || |- ! 342 | 542413, 26199602893, ... || |- ! 348 | 66239465233897, ... || |- ! 350 | 140460782701, ... || |- ! 360 | 23911458481, ... || |- ! 366 | 808861, ... || |- ! 372 | 2469439417, ... || |- ! 396 | 8432772615433, ... || |- ! 402 | 8942902453, 813535908179653, ... || |- ! 408 | 1238906223697, ... || |- ! 414 | 8062678298557, ... || |- ! 430 | 124528653669661, ... || |- ! 438 | 6287557453, ... || |- ! 480 | 1324790832961, ... || |- ! 522 | 723378252872773, 106049331638192773, ... || |- ! 546 | 211125067071829, ... || |- ! 570 | 1345711391461, 5810517340434661, ... || |- ! 660 | 13786783637881, ... || |- ! 672 | 142718568339485377, ... || |- ! 684 | 154643791177, ... || |- ! 774 | 8695993590900027, ... || |- ! 810 | 5646270598021, ... || |- ! 814 | 31571188513, ... || |- ! 816 | 31571188513, ... || |- ! 820 | 1119337766869561, ... || |- ! 968 | 52335185632753, ... || |- ! 972 | 289085338292617, ... || |- ! 978 | 60246544949557, ... || |- ! 1050 | 64169172901, ... || |- ! 1410 | 80293806421, ... || |- ! 2772 | 95295817, 124035913, ... || {{OEIS2C|A028502}} |- ! 3918 | 61442077, 217033693, 12059549149, 60174845917, ... || |- ! 9222 | 404458477, 3426618541, 8983131757, 13027827181, ... || |- ! 9828 | 432373033, 2797540201, 3777981481, 13197765673, ... || |- ! 14280 | 848374801, 2324355601, 4390957201, 16498569361, ... || |- ! 23730 | 2288948341, 3102982261, 6861054901, 30897836341, ... || |- ! 31752 | 4660241041, 7220722321, 12994506001, 52929885457, 60771359377, ... || {{OEIS2C|A034916}} |- ! 55848 | 15166641361, 44783952721, 67623550801, ... || |- ! 67782 | 18407557741, 18444431149, 34939858669, ... || |- ! 92568 | 50611924273, 64781493169, 84213367729, ... || |- ! 100932 | 50969246953, 53192980777, 82145123113, ... || |} It can be shown that if {{math|''k'' > 1}} is an [[Even and odd numbers|odd]] [[integer]] and <math>p = \tfrac{3k+1}{2}</math> and <math>q = 3k+4</math> are [[prime number]]s, then {{tmath|p^2q}} is {{mvar|k}}-hyperperfect; Judson S. McCranie has conjectured in 2000 that all {{mvar|k}}-hyperperfect numbers for odd {{math|''k'' > 1}} are of this form, but the hypothesis has not been proven so far. Furthermore, it can be proven that if {{math|''p'' β ''q''}} are odd primes and {{mvar|k}} is an integer such that <math>k(p+q) = pq-1,</math> then {{mvar|pq}} is {{mvar|k}}-hyperperfect. It is also possible to show that if {{math|''k'' > 0}} and <math>p = k+1</math> is prime, then for all {{math|''i'' > 1}} such that <math>q = p^i - p+1</math> is prime, <math>n = p^{i-1}q</math> is {{mvar|k}}-hyperperfect. The following table lists known values of {{mvar|k}} and corresponding values of {{mvar|i}} for which {{mvar|n}} is {{mvar|k}}-hyperperfect: {| class="wikitable mw-collapsible mw-collapsed" |+ class="nowrap" | Values of {{mvar|i}} for which {{mvar|n}} is {{mvar|k}}-hyperperfect |- ! {{mvar|k}} !! Values of {{mvar|i}} !! OEIS |- ! 16 | 11, 21, 127, 149, 469, ... || {{OEIS2C|A034922}} |- ! 22 | 17, 61, 445, ... || |- ! 28 | 33, 89, 101, ... || |- ! 36 | 67, 95, 341, ... || |- ! 42 | 4, 6, 42, 64, 65, ... || {{OEIS2C|A034923}} |- ! 46 | 5, 11, 13, 53, 115, ... || {{OEIS2C|A034924}} |- ! 52 | 21, 173, ... || |- ! 58 | 11, 117, ... || |- ! 72 | 21, 49, ... || |- ! 88 | 9, 41, 51, 109, 483, ... || {{OEIS2C|A034925}} |- ! 96 | 6, 11, 34, ... || |- ! 100 | 3, 7, 9, 19, 29, 99, 145, ... || {{OEIS2C|A034926}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)