Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Image (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== {{Group theory sidebar |Basics}} [[File:ImagePreimageOfElement.png|300px|thumb|right|<math>f</math> is a function from domain <math>X</math> to codomain <math>Y</math>. The image of element <math>x</math> is element <math>y</math>. The preimage of element <math>y</math> is the set {<math>x, x'</math>}. The preimage of element <math>y'</math> is <math>\varnothing</math>.]] [[File:ImagePreimageofaSet.png|300px|thumb|right|<math>f</math> is a function from domain <math>X</math> to codomain <math>Y</math>. The image of all elements in subset <math>A</math> is subset <math>B</math>. The preimage of <math>B</math> is subset <math>C</math>]] [[File:Codomain2.SVG|thumb|upright=1.2|<math>f</math> is a function from domain <math>X</math> to codomain <math>Y.</math> The yellow oval inside <math>Y</math> is the image of <math>f</math>. The preimage of <math>Y</math> is the entire domain <math>X</math>]] The word "image" is used in three related ways. In these definitions, <math>f : X \to Y</math> is a [[Function (mathematics)|function]] from the [[Set (mathematics)|set]] <math>X</math> to the set <math>Y.</math> ===Image of an element=== If <math>x</math> is a member of <math>X,</math> then the image of <math>x</math> under <math>f,</math> denoted <math>f(x),</math> is the [[Value (mathematics)|value]] of <math>f</math> when applied to <math>x.</math> <math>f(x)</math> is alternatively known as the output of <math>f</math> for argument <math>x.</math> Given <math>y,</math> the function <math>f</math> is said to {{em|take the value <math>y</math>}} or {{em|take <math>y</math> as a value}} if there exists some <math>x</math> in the function's domain such that <math>f(x) = y.</math> Similarly, given a set <math>S,</math> <math>f</math> is said to {{em|take a value in <math>S</math>}} if there exists {{em|some}} <math>x</math> in the function's domain such that <math>f(x) \in S.</math> However, {{em|<math>f</math> takes [all] values in <math>S</math>}} and {{em|<math>f</math> is valued in <math>S</math>}} means that <math>f(x) \in S</math> for {{em|every}} point <math>x</math> in the domain of <math>f</math> . ===Image of a subset=== Throughout, let <math>f : X \to Y</math> be a function. The {{anchor|image of a set}}{{em|image}} under <math>f</math> of a subset <math>A</math> of <math>X</math> is the set of all <math>f(a)</math> for <math>a\in A.</math> It is denoted by <math>f[A],</math> or by <math>f(A)</math> when there is no risk of confusion. Using [[set-builder notation]], this definition can be written as<ref>{{Cite web|date=2019-11-05| title=5.4: Onto Functions and Images/Preimages of Sets| url=https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/5%3A_Functions/5.4%3A_Onto_Functions_and_Images%2F%2FPreimages_of_Sets| access-date=2020-08-28| website=Mathematics LibreTexts| language=en}}</ref><ref>{{cite book| author=Paul R. Halmos| title=Naive Set Theory| location=Princeton| publisher=Nostrand| year=1968 }} Here: Sect.8</ref> <math display=block>f[A] = \{f(a) : a \in A\}.</math> This induces a function <math>f[\,\cdot\,] : \mathcal P(X) \to \mathcal P(Y),</math> where <math>\mathcal P(S)</math> denotes the [[power set]] of a set <math>S;</math> that is the set of all [[subset]]s of <math>S.</math> See {{Section link||Notation}} below for more. ===Image of a function=== The ''image'' of a function is the image of its entire [[Domain of a function|domain]], also known as the [[Range of a function|range]] of the function.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Image|url=https://mathworld.wolfram.com/Image.html|access-date=2020-08-28|website=mathworld.wolfram.com|language=en}}</ref> This last usage should be avoided because the word "range" is also commonly used to mean the [[codomain]] of <math>f.</math> ===Generalization to binary relations=== If <math>R</math> is an arbitrary [[binary relation]] on <math>X \times Y,</math> then the set <math>\{ y \in Y : x R y \text{ for some } x \in X \}</math> is called the image, or the range, of <math>R.</math> Dually, the set <math>\{ x \in X : x R y \text{ for some } y \in Y \}</math> is called the domain of <math>R.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)