Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Image segmentation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == [[File:3D CT of thorax.jpg|thumb|Volume segmentation of a 3D-rendered [[CT scan]] of the [[thorax]]: The anterior thoracic wall, the airways and the pulmonary vessels anterior to the root of the lung have been digitally removed in order to visualize thoracic contents: <br />– <span style="color:blue;">blue</span>: [[pulmonary arteries]] <br />– <span style="color:red;">red</span>: [[pulmonary veins]] (and also the [[abdominal wall]])<br />– <span style="color:yellow;">yellow</span>: the [[mediastinum]] <br />– <span style="color:violet;">violet</span>: the [[Thoracic diaphragm|diaphragm]] ]] Some of the practical applications of image segmentation are: * [[Content-based image retrieval]]<ref>Belongie, Serge, et al. "[http://people.eecs.berkeley.edu/~malik/papers/blobworld98.pdf Color-and texture-based image segmentation using EM and its application to content-based image retrieval]." Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271). IEEE, 1998.</ref> * [[Machine vision]] * [[Medical imaging]],<ref>{{cite journal | last1 = Pham | first1 = Dzung L. | last2 = Xu | first2 = Chenyang | last3 = Prince | first3 = Jerry L. | year = 2000 | title = Current Methods in Medical Image Segmentation | journal = Annual Review of Biomedical Engineering | volume = 2 | pages = 315–337 | pmid = 11701515 | doi = 10.1146/annurev.bioeng.2.1.315 }}</ref><ref>{{cite journal | last1 = Forghani| first1 = M. | last2 = Forouzanfar | first2 = M.| last3 = Teshnehlab| first3 = M. | year = 2010 | title = Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation | journal = Engineering Applications of Artificial Intelligence | volume = 23 | issue = 2 | pages = 160–168 | doi = 10.1016/j.engappai.2009.10.002 }}</ref> and imaging studies in biomedical research, including [[volume rendering|volume rendered]] images from [[CT scan|computed tomography]], [[magnetic resonance imaging]], as well as volume electron microscopy techniques such as FIB-SEM.<ref>{{Cite journal |last1=Reznikov |first1=Natalie |last2=Buss |first2=Dan J. |last3=Provencher |first3=Benjamin |last4=McKee |first4=Marc D. |last5=Piché |first5=Nicolas |date=October 2020 |title=Deep learning for 3D imaging and image analysis in biomineralization research |url=http://dx.doi.org/10.1016/j.jsb.2020.107598 |journal=Journal of Structural Biology |volume=212 |issue=1 |pages=107598 |doi=10.1016/j.jsb.2020.107598 |pmid=32783967 |s2cid=221126896 |issn=1047-8477}}</ref> ** Locate tumors and other pathologies<ref>{{cite journal | url=https://link.springer.com/article/10.1007/s11548-013-0922-7 | doi=10.1007/s11548-013-0922-7 | title=Brain tumor detection and segmentation in a CRF (Conditional random fields) framework with pixel-pairwise affinity and superpixel-level features | year=2014 | last1=Wu | first1=Wei | last2=Chen | first2=Albert Y. C. | last3=Zhao | first3=Liang | last4=Corso | first4=Jason J. | journal=International Journal of Computer Assisted Radiology and Surgery | volume=9 | issue=2 | pages=241–253 | pmid=23860630 | s2cid=13474403 }}</ref><ref>E. B. George and M. Karnan (2012): "[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.7411&rep=rep1&type=pdf MR Brain image segmentation using Bacteria Foraging Optimization Algorithm]", ''International Journal of Engineering and Technology'', Vol. 4.</ref> ** Measure tissue volumes<ref>{{Cite journal |last1=Ye |first1=Run Zhou |last2=Noll |first2=Christophe |last3=Richard |first3=Gabriel |last4=Lepage |first4=Martin |last5=Turcotte |first5=Éric E. |last6=Carpentier |first6=André C. |date=February 2022 |title=DeepImageTranslator: A free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis |journal=SLAS Technology |volume=27 |issue=1 |pages=76–84 |doi=10.1016/j.slast.2021.10.014 |pmid=35058205 |issn=2472-6303|doi-access=free }}</ref><ref>{{Cite journal |last1=Ye |first1=En Zhou |last2=Ye |first2=En Hui |last3=Bouthillier |first3=Maxime |last4=Ye |first4=Run Zhou |date=18 February 2022 |title=DeepImageTranslator V2: analysis of multimodal medical images using semantic segmentation maps generated through deep learning |language=en |biorxiv=10.1101/2021.10.12.464160v2 |doi=10.1101/2021.10.12.464160 |s2cid=239012446}}</ref> ** Diagnosis, study of anatomical structure<ref>{{cite journal|last1=Kamalakannan|first1=Sridharan|last2=Gururajan|first2=Arunkumar|last3=Sari-Sarraf|first3=Hamed|last4=Rodney|first4=Long|last5=Antani|first5=Sameer|title=Double-Edge Detection of Radiographic Lumbar Vertebrae Images Using Pressurized Open DGVF Snakes|journal=IEEE Transactions on Biomedical Engineering|date=17 February 2010|volume=57|issue=6|pages=1325–1334|doi=10.1109/tbme.2010.2040082|pmid=20172792|s2cid=12766600}}</ref> ** Surgery planning ** Virtual surgery simulation ** Intra-surgery navigation ** Radiotherapy<ref>{{Cite arXiv |last1=Georgescu |first1=Mariana-Iuliana |last2=Ionescu |first2=Radu Tudor |last3=Miron |first3=Andreea-Iuliana |date=21 December 2022 |title=Diversity-Promoting Ensemble for Medical Image Segmentation |class=eess.IV |eprint=2210.12388 }}</ref> * [[Object detection]]<ref>J. A. Delmerico, P. David and J. J. Corso (2011): "[http://www.jeffdelmerico.com/wp-content/papercite-data/pdf/delmerico2011building.pdf Building façade detection, segmentation and parameter estimation for mobile robot localization and guidance]", International Conference on Intelligent Robots and Systems, pp. 1632–1639.</ref> ** [[Pedestrian detection]] ** [[Face detection]] ** Brake light detection ** Locate objects in satellite images (roads, forests, crops, etc.) * Recognition Tasks ** [[Face recognition]] ** [[Fingerprint recognition]] ** [[Iris recognition]] ** Prohibited Item at [[Airport security]] checkpoints * Traffic control systems * [[Video surveillance]] *[[Object co-segmentation|Video object co-segmentation and action localization]]<ref name="Liu Wang Hua Zhang 2018 pp. 5840–5853"/><ref name="Wang Duan Zhang Niu p=1657"/> Several general-purpose [[algorithm]]s and techniques have been developed for image segmentation. To be useful, these techniques must typically be combined with a domain's specific knowledge in order to effectively solve the domain's segmentation problems.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)