Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Indeterminate form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Some examples and non-examples == === Indeterminate form 0/0 === {{Redirect|0/0|the symbol|Percent sign|0 divided by 0|Division by zero}} <gallery> File:Indeterminate form - x over x.gif|Fig. 1: {{var|y}} = {{sfrac|{{var|x}}|{{var|x}}}} File:Indeterminate form - x2 over x.gif|Fig. 2: {{var|y}} = {{sfrac|{{var|x}}{{sup|2}}|{{var|x}}}} File:Indeterminate form - sin x over x close.gif|Fig. 3: {{var|y}} = {{sfrac|sin {{var|x}}|{{var|x}}}} File:Indeterminate form - complicated.gif|Fig. 4: {{var|y}} = {{sfrac|x − 49|{{radic|x}} − 7}} (for {{var|x}} = 49) File:Indeterminate form - 2x over x.gif|Fig. 5: {{var|y}} = {{sfrac|{{var|a}}{{var|x}}|{{var|x}}}} where {{var|a}} = 2 File:Indeterminate form - x over x3.gif|Fig. 6: {{var|y}} = {{sfrac|{{var|x}}|{{var|x}}{{sup|3}}}} </gallery> The indeterminate form <math>0/0</math> is particularly common in [[calculus]], because it often arises in the evaluation of [[derivative]]s using their definition in terms of limit. As mentioned above, {{block indent|<math> \lim_{x \to 0} \frac{x}{x} = 1, \qquad </math> (see fig. 1)}} while {{block indent|<math> \lim_{x \to 0} \frac{x^{2}}{x} = 0, \qquad </math> (see fig. 2)}} This is enough to show that <math>0/0</math> is an indeterminate form. Other examples with this indeterminate form include {{block indent|<math> \lim_{x \to 0} \frac{\sin(x)}{x} = 1, \qquad </math> (see fig. 3)}} and {{block indent|<math> \lim_{x \to 49} \frac{x - 49}{\sqrt{x}\, - 7} = 14, \qquad </math> (see fig. 4)}} Direct substitution of the number that ''<math>x</math>'' approaches into any of these expressions shows that these are examples correspond to the indeterminate form <math>0/0</math>, but these limits can assume many different values. Any desired value <math>a</math> can be obtained for this indeterminate form as follows: {{block indent|<math> \lim_{x \to 0} \frac{ax}{x} = a . \qquad </math> (see fig. 5)}} The value <math>\infty</math> can also be obtained (in the sense of divergence to infinity): {{block indent|<math> \lim_{x \to 0} \frac{x}{x^3} = \infty . \qquad </math> (see fig. 6)}} ===Indeterminate form 0<sup>0</sup> === {{main|Zero to the power of zero}} {{multiple image | image1 = Indeterminate form - x0.gif | caption1 = Graph of {{math|1=''y'' = ''x''{{sup|0}}}} | image2 = Indeterminate form - 0x.gif | caption2 = Graph of {{math|1=''y'' = 0{{sup|''x''}}}} | total_width = 300 | direction = vertical }} The following limits illustrate that the expression <math>0^0</math> is an indeterminate form: <math display="block"> \begin{align} \lim_{x \to 0^+} x^0 &= 1, \\ \lim_{x \to 0^+} 0^x &= 0. \end{align} </math> Thus, in general, knowing that <math>\textstyle\lim_{x \to c} f(x) \;=\; 0</math> and <math>\textstyle\lim_{x \to c} g(x) \;=\; 0</math> is not sufficient to evaluate the limit <math display="block"> \lim_{x \to c} f(x)^{g(x)}. </math> If the functions <math>f</math> and <math>g</math> are [[Analytic function|analytic]] at <math>c</math>, and <math>f</math> is positive for <math>x</math> sufficiently close (but not equal) to <math>c</math>, then the limit of <math>f(x)^{g(x)}</math> will be <math>1</math>.<ref>{{cite journal |doi=10.2307/2689754 |author1=Louis M. Rotando |author2=Henry Korn |title=The indeterminate form 0<sup>0</sup> |journal=Mathematics Magazine |date=January 1977 |volume=50 |issue=1 |pages=41–42|jstor=2689754 }}</ref> Otherwise, use the transformation in the [[#List of indeterminate forms|table]] below to evaluate the limit. === Expressions that are not indeterminate forms === The expression <math>1/0</math> is not commonly regarded as an indeterminate form, because if the limit of <math>f/g</math> exists then there is no ambiguity as to its value, as it always diverges. Specifically, if <math>f</math> approaches <math>1</math> and <math>g</math> approaches <math>0,</math> then <math>f</math> and <math>g</math> may be chosen so that: # <math>f/g</math> approaches <math>+\infty</math> # <math>f/g</math> approaches <math>-\infty</math> # The limit fails to exist. In each case the absolute value <math>|f/g|</math> approaches <math>+\infty</math>, and so the quotient <math>f/g</math> must diverge, in the sense of the [[extended real number]]s (in the framework of the [[projectively extended real line]], the limit is the [[Point at infinity|unsigned infinity]] <math>\infty</math> in all three cases<ref name=":3">{{Cite web|url=https://www.cut-the-knot.org/blue/GhostCity.shtml|title=Undefined vs Indeterminate in Mathematics|website=www.cut-the-knot.org|access-date=2019-12-02}}</ref>). Similarly, any expression of the form <math>a/0</math> with <math>a\ne0</math> (including <math>a=+\infty</math> and <math>a=-\infty</math>) is not an indeterminate form, since a quotient giving rise to such an expression will always diverge. The expression <math>0^\infty</math> is not an indeterminate form. The expression <math>0^{+\infty}</math> obtained from considering <math>\lim_{x \to c} f(x)^{g(x)}</math> gives the limit <math>0,</math> provided that <math>f(x)</math> remains nonnegative as <math>x</math> approaches <math>c</math>. The expression <math>0^{-\infty}</math> is similarly equivalent to <math>1/0</math>; if <math>f(x) > 0</math> as <math>x</math> approaches <math>c</math>, the limit comes out as <math>+\infty</math>. To see why, let <math>L = \lim_{x \to c} f(x)^{g(x)},</math> where <math> \lim_{x \to c} {f(x)}=0,</math> and <math> \lim_{x \to c} {g(x)}=\infty.</math> By taking the natural logarithm of both sides and using <math> \lim_{x \to c} \ln{f(x)}=-\infty,</math> we get that <math>\ln L = \lim_{x \to c} ({g(x)}\times\ln{f(x)})=\infty\times{-\infty}=-\infty,</math> which means that <math>L = {e}^{-\infty}=0.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)