Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Canonical and standard form for ILPs== In integer linear programming, the ''canonical form'' is distinct from the ''standard form''. An integer linear program in canonical form is expressed thus (note that it is the <math>\mathbf{x}</math> vector which is to be decided):<ref name="optBook">{{cite book|last1=Papadimitriou|first1=C. H.|author1-link=Christos Papadimitriou|last2=Steiglitz|first2= K.|author2-link=Kenneth Steiglitz|title=Combinatorial optimization: algorithms and complexity|year=1998|publisher=Dover|location=Mineola, NY|isbn=0486402584}}</ref> :<math> \begin{align} & \underset{\mathbf{x} \in \mathbb{Z}^n}{\text{maximize}} && \mathbf{c}^\mathrm{T} \mathbf{x}\\ & \text{subject to} && A \mathbf{x} \le \mathbf{b}, \\ & && \mathbf{x} \ge \mathbf{0} \end{align} </math> and an ILP in standard form is expressed as :<math> \begin{align} & \underset{\mathbf{x} \in \mathbb{Z}^n}{\text{maximize}} && \mathbf{c}^\mathrm{T} \mathbf{x}\\ & \text{subject to} && A \mathbf{x} + \mathbf{s} = \mathbf{b}, \\ & && \mathbf{s} \ge \mathbf{0}, \\ & && \mathbf{x} \ge \mathbf{0}, \end{align} </math> where <math>\mathbf{c}\in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m</math> are vectors and <math>A \in \mathbb{R}^{m \times n}</math> is a matrix. As with linear programs, ILPs not in standard form can be [[simplex algorithm#Standard form|converted to standard form]] by eliminating inequalities, introducing slack variables (<math>\mathbf{s}</math>) and replacing variables that are not sign-constrained with the difference of two sign-constrained variables.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)