Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== [[Image:Inverse Functions Domain and Range.png|thumb|right|240px|If {{mvar|f}} maps {{mvar|X}} to {{mvar|Y}}, then {{math|''f''<sup>ββ1</sup>}} maps {{mvar|Y}} back to {{mvar|X}}.]] Let {{mvar|f}} be a function whose [[domain of a function|domain]] is the [[Set (mathematics)|set]] {{mvar|X}}, and whose [[codomain]] is the set {{mvar|Y}}. Then {{mvar|f}} is ''invertible'' if there exists a function {{mvar|g}} from {{mvar|Y}} to {{mvar|X}} such that <math>g(f(x))=x</math> for all <math>x\in X</math> and <math>f(g(y))=y</math> for all <math>y\in Y</math>.<ref name=":2">{{Cite web|last=Weisstein|first=Eric W.|title=Inverse Function|url=https://mathworld.wolfram.com/InverseFunction.html|access-date=2020-09-08|website=mathworld.wolfram.com|language=en}}</ref> If {{mvar|f}} is invertible, then there is exactly one function {{mvar|g}} satisfying this property. The function {{mvar|g}} is called the inverse of {{mvar|f}}, and is usually denoted as {{math|''f''<sup>ββ1</sup>}}, a notation introduced by [[John Frederick William Herschel]] in 1813.<ref name="Herschel_1813"/><ref name="Herschel_1820"/><ref name="Peirce_1852"/><ref name="Peano_1903"/><ref name="Cajori_1929"/><ref group="nb" name="NB2"/> The function {{mvar|f}} is invertible if and only if it is bijective. This is because the condition <math>g(f(x))=x</math> for all <math>x\in X</math> implies that {{mvar|f}} is [[Injective function|injective]], and the condition <math>f(g(y))=y</math> for all <math>y\in Y</math> implies that {{mvar|f}} is [[Surjective function|surjective]]. The inverse function {{math|''f''<sup>ββ1</sup>}} to {{mvar|f}} can be explicitly described as the function :<math>f^{-1}(y)=(\text{the unique element }x\in X\text{ such that }f(x)=y)</math>. ==={{anchor|Compositional inverse}}Inverses and composition=== {{See also|Inverse element}} Recall that if {{mvar|f}} is an invertible function with domain {{mvar|X}} and codomain {{mvar|Y}}, then : <math> f^{-1}\left(f(x)\right) = x</math>, for every <math>x \in X</math> and <math> f\left(f^{-1}(y)\right) = y</math> for every <math>y \in Y </math>. Using the [[composition of functions]], this statement can be rewritten to the following equations between functions: : <math> f^{-1} \circ f = \operatorname{id}_X</math> and <math>f \circ f^{-1} = \operatorname{id}_Y, </math> where {{math|id<sub>''X''</sub>}} is the [[identity function]] on the set {{mvar|X}}; that is, the function that leaves its argument unchanged. In [[category theory]], this statement is used as the definition of an inverse [[morphism]]. Considering function composition helps to understand the notation {{math|''f''<sup>ββ1</sup>}}. Repeatedly composing a function {{math|''f'': ''X''β''X''}} with itself is called [[iterated function|iteration]]. If {{mvar|f}} is applied {{mvar|n}} times, starting with the value {{mvar|x}}, then this is written as {{math|''f''<sup>β''n''</sup>(''x'')}}; so {{math|''f''<sup>β2</sup>(''x'') {{=}} ''f'' (''f'' (''x''))}}, etc. Since {{math|''f''<sup>ββ1</sup>(''f'' (''x'')) {{=}} ''x''}}, composing {{math|''f''<sup>ββ1</sup>}} and {{math|''f''<sup>β''n''</sup>}} yields {{math|''f''<sup>β''n''β1</sup>}}, "undoing" the effect of one application of {{mvar|f}}. ===Notation=== While the notation {{math|''f''<sup>ββ1</sup>(''x'')}} might be misunderstood,<ref name=":2" /> {{math|(''f''(''x''))<sup>β1</sup>}} certainly denotes the [[multiplicative inverse]] of {{math|''f''(''x'')}} and has nothing to do with the inverse function of {{mvar|f}}.<ref name="Cajori_1929"/> The notation <math>f^{\langle -1\rangle}</math> might be used for the inverse function to avoid ambiguity with the [[multiplicative inverse]].<ref>Helmut Sieber und Leopold Huber: ''Mathematische Begriffe und Formeln fΓΌr Sekundarstufe I und II der Gymnasien.'' Ernst Klett Verlag.</ref> In keeping with the general notation, some English authors use expressions like {{math|sin<sup>β1</sup>(''x'')}} to denote the inverse of the sine function applied to {{mvar|x}} (actually a [[#Partial inverses|partial inverse]]; see below).<ref>{{harvnb|Thomas|1972|loc=pp. 304β309}}</ref><ref name="Cajori_1929"/> Other authors feel that this may be confused with the notation for the multiplicative inverse of {{math|sinβ(''x'')}}, which can be denoted as {{math|(sinβ(''x''))<sup>β1</sup>}}.<ref name="Cajori_1929"/> To avoid any confusion, an [[inverse trigonometric function]] is often indicated by the prefix "[[arc (function prefix)|arc]]" (for Latin {{lang|la|arcus}}).<ref name="Korn_2000"/><ref name="Atlas_2009"/> For instance, the inverse of the sine function is typically called the [[arcsine]] function, written as {{math|[[arcsin]](''x'')}}.<ref name="Korn_2000"/><ref name="Atlas_2009"/> Similarly, the inverse of a [[hyperbolic function]] is indicated by the prefix "[[ar (function prefix)|ar]]" (for Latin {{lang|la|Δrea}}).<ref name="Atlas_2009"/> For instance, the inverse of the [[hyperbolic sine]] function is typically written as {{math|[[arsinh]](''x'')}}.<ref name="Atlas_2009"/> The expressions like {{math|sin<sup>β1</sup>(''x'')}} can still be useful to distinguish the [[Multivalued function|multivalued]] inverse from the partial inverse: <math>\sin^{-1}(x) = \{(-1)^n \arcsin(x) + \pi n : n \in \mathbb Z\}</math>. Other inverse special functions are sometimes prefixed with the prefix "inv", if the ambiguity of the {{math|''f''<sup>ββ1</sup>}} notation should be avoided.<ref name="Hall_1909"/><ref name="Atlas_2009"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)