Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse kinematics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Robotics== In robotics, inverse kinematics makes use of the [[kinematics]] equations to determine the joint parameters that provide a desired configuration (position and rotation) for each of the robot's [[Robot end effector|end-effectors]].<ref>{{cite book | last = Paul | first = Richard | title = Robot manipulators: mathematics, programming, and control : the computer control of robot manipulators | publisher = MIT Press, Cambridge, MA | year = 1981 | url = https://books.google.com/books?id=UzZ3LAYqvRkC | isbn =978-0-262-16082-7 }}</ref> This is important because robot tasks are performed with the end effectors, while control effort applies to the joints. Determining the movement of a robot so that its end-effectors move from an initial configuration to a desired configuration is known as [[motion planning]]. Inverse kinematics transforms the motion plan into joint [[actuator]] trajectories for the robot.<ref name=":0" /> Similar formulas determine the positions of the skeleton of an [[character animation|animated character]] that is to move in a particular way in a film, or of a vehicle such as a car or boat containing the camera which is shooting a scene of a film. Once a vehicle's motions are known, they can be used to determine the constantly-changing viewpoint for computer-generated imagery of objects in the landscape such as buildings, so that these objects change in [[Perspective (graphical)|perspective]] while themselves not appearing to move as the vehicle-borne camera goes past them. The movement of a [[kinematic chain]], whether it is a robot or an animated character, is modeled by the kinematics equations of the chain. These equations define the configuration of the chain in terms of its joint parameters. [[Forward kinematics]] uses the joint parameters to compute the configuration of the chain, and inverse kinematics reverses this calculation to determine the joint parameters that achieve a desired configuration.<ref>J. M. McCarthy, 1990, ''Introduction to Theoretical Kinematics,'' MIT Press, Cambridge, MA.</ref><ref name=Uicker2003>J. J. Uicker, G. R. Pennock, and J. E. Shigley, 2003, '''Theory of Machines and Mechanisms,''' Oxford University Press, New York.</ref><ref name=McCarthy2010>J. M. McCarthy and G. S. Soh, 2010, [https://books.google.com/books?id=jv9mQyjRIw4C&dq=geometric+design+of+linkages&pg=PA231 ''Geometric Design of Linkages,''] Springer, New York.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)