Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Killing spinor
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Definition == By the more narrow definition, commonly used in mathematics, the term Killing spinor indicates those [[Twistor theory|twistor]] spinors which are also [[eigenspinor]]s of the [[Dirac operator]].<ref>{{cite journal|title=Der erste Eigenwert des Dirac Operators einer kompakten, Riemannschen Mannigfaltigkei nichtnegativer Skalarkrümmung|author=Th. Friedrich|journal=[[Mathematische Nachrichten]]|volume=97|year=1980|pages=117–146|doi=10.1002/mana.19800970111}}</ref><ref>{{cite journal|title=On the conformal relation between twistors and Killing spinors|author=Th. Friedrich|journal=Supplemento dei Rendiconti del Circolo Matematico di Palermo, Serie II|volume=22|year=1989|pages=59–75}}</ref><ref>{{cite journal|title=Spin manifolds, Killing spinors and the universality of Hijazi inequality|author=A. Lichnerowicz|author-link=André Lichnerowicz|journal=Lett. Math. Phys.|volume=13|year=1987|issue=4 |pages=331–334|doi=10.1007/bf00401162|bibcode = 1987LMaPh..13..331L |s2cid=121971999}}</ref> The term is named after [[Wilhelm Killing]]. Another equivalent definition is that Killing spinors are the solutions to the [[Killing equation]] for a so-called Killing number. More formally:<ref>{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] |pages= 116–117| year=2000|isbn=978-0-8218-2055-1}} </ref> :A '''Killing spinor''' on a [[Riemannian manifold|Riemannian]] [[Spin structure|spin]] [[manifold]] ''M'' is a [[spinor field]] <math>\psi</math> which satisfies ::<math>\nabla_X\psi=\lambda X\cdot\psi</math> :for all [[tangent space|tangent vectors]] ''X'', where <math>\nabla</math> is the spinor [[covariant derivative]], <math>\cdot</math> is [[Clifford multiplication]] and <math>\lambda \in \mathbb{C}</math> is a constant, called the '''Killing number''' of <math>\psi</math>. If <math>\lambda=0</math> then the spinor is called a parallel spinor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)