Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Knuth's up-arrow notation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Introduction== The [[hyperoperations]] naturally extend the [[arithmetic]] operations of [[addition]] and [[multiplication]] as follows. [[Addition]] by a [[natural number]] is defined as iterated incrementation: :<math> \begin{matrix} H_1(a,b) = a+b = & a+\underbrace{1+1+\dots+1} \\ & b\mbox{ copies of }1 \end{matrix} </math> [[Multiplication]] by a [[natural number]] is defined as iterated [[addition]]: :<math> \begin{matrix} H_2(a,b) = a\times b = & \underbrace{a+a+\dots+a} \\ & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\times 3 & = & \underbrace{4+4+4} & = & 12\\ & & 3\mbox{ copies of }4 \end{matrix} </math> [[Exponentiation]] for a natural power <math>b</math> is defined as iterated multiplication, which Knuth denoted by a single up-arrow: :<math> \begin{matrix} a\uparrow b = H_3(a,b) = a^b = & \underbrace{a\times a\times\dots\times a}\\ & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\uparrow 3= 4^3 = & \underbrace{4\times 4\times 4} & = & 64\\ & 3\mbox{ copies of }4 \end{matrix} </math> [[Tetration]] is defined as iterated exponentiation, which Knuth denoted by a “double arrow”: :<math> \begin{matrix} a\uparrow\uparrow b = H_4(a,b) = & \underbrace{a^{a^{{}^{.\,^{.\,^{.\,^a}}}}}} & = & \underbrace{a\uparrow (a\uparrow(\cdots\uparrow a))} \\ & b\mbox{ copies of }a & & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\uparrow\uparrow 3 = & \underbrace{4^{4^4}} & = & \underbrace{4\uparrow (4\uparrow 4)} & = & 4^{256} & & \\ & 3\mbox{ copies of }4 & &3\mbox{ copies of }4 \end{matrix} </math> Expressions are evaluated from right to left, as the operators are defined to be [[Right associative operator|right-associative]]. According to this definition, :<math>3\uparrow\uparrow 2=3^3=27 </math> :<math>3\uparrow\uparrow 3=3^{3^3}=3^{27}=7,625,597,484,987 </math> :<math>3\uparrow\uparrow 4=3^{3^{3^3}}=3^{3^{27}}=3^{7625597484987} </math> :<math>3\uparrow\uparrow 5=3^{3^{3^{3^3}}}=3^{3^{3^{27}}}=3^{3^{7625597484987}} </math> :etc. This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here. [[Pentation]], defined as iterated tetration, is represented by the “triple arrow”: :<math> \begin{matrix} a\uparrow\uparrow\uparrow b = H_5(a,b) = & \underbrace{a_{}\uparrow\uparrow (a\uparrow\uparrow(\cdots\uparrow\uparrow a))}\\ & b\mbox{ copies of }a \end{matrix} </math> [[Hexation]], defined as iterated pentation, is represented by the “quadruple arrow”: :<math> \begin{matrix} a\uparrow\uparrow\uparrow\uparrow b = H_6(a,b) = & \underbrace{a_{}\uparrow\uparrow\uparrow (a\uparrow\uparrow\uparrow(\cdots\uparrow\uparrow\uparrow a))}\\ & b\mbox{ copies of }a \end{matrix} </math> and so on. The general rule is that an <math>n</math>-arrow operator expands into a right-associative series of (<math>n - 1</math>)-arrow operators. Symbolically, :<math> \begin{matrix} a\ \underbrace{\uparrow_{}\uparrow\!\!\cdots\!\!\uparrow}_{n}\ b= \underbrace{a\ \underbrace{\uparrow\!\!\cdots\!\!\uparrow}_{n-1} \ (a\ \underbrace{\uparrow_{}\!\!\cdots\!\!\uparrow}_{n-1} \ (\cdots \ \underbrace{\uparrow_{}\!\!\cdots\!\!\uparrow}_{n-1} \ a))}_{b\text{ copies of }a} \end{matrix} </math> Examples: :<math>3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,625,597,484,987</math> :<math> \begin{align} 3\uparrow\uparrow\uparrow3 &= 3\uparrow\uparrow(3\uparrow\uparrow3) \\ &= 3\uparrow\uparrow(3\uparrow 3\uparrow3) \\ &= \begin{matrix} \underbrace{3\uparrow 3\uparrow\cdots\uparrow 3} \\ 3\uparrow3\uparrow3\mbox{ copies of } 3 \end{matrix}\\ &= \begin{matrix} \underbrace{3\uparrow 3\uparrow\cdots\uparrow 3} \\ \mbox{7,625,597,484,987 copies of 3} \end{matrix}\\ &= \begin{matrix} \underbrace{3^{3^{3^{3^{\cdot^{\cdot^{\cdot^{\cdot^{3}}}}}}}}} \\ \mbox{7,625,597,484,987 copies of 3} \end{matrix} \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)