Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statement== Suppose {{mvar|z}} is defined as a function of {{mvar|w}} by an equation of the form :<math>z = f(w)</math> where {{mvar|f}} is analytic at a point {{mvar|a}} and <math>f'(a)\neq 0.</math> Then it is possible to ''invert'' or ''solve'' the equation for {{mvar|w}}, expressing it in the form <math>w=g(z)</math> given by a [[power series]]<ref>{{cite book |editor=M. Abramowitz |editor2=I. A. Stegun |title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables |chapter=3.6.6. Lagrange's Expansion |place=New York |publisher=Dover |page=14 |year=1972 |url=http://people.math.sfu.ca/~cbm/aands/page_14.htm}}</ref> :<math> g(z) = a + \sum_{n=1}^{\infty} g_n \frac{(z - f(a))^n}{n!}, </math> where :<math> g_n = \lim_{w \to a} \frac{d^{n-1}}{dw^{n-1}} \left[\left( \frac{w-a}{f(w) - f(a)} \right)^n \right]. </math> The theorem further states that this series has a non-zero radius of convergence, i.e., <math>g(z)</math> represents an analytic function of {{mvar|z}} in a [[neighbourhood (mathematics)|neighbourhood]] of <math>z= f(a).</math> This is also called '''reversion of series'''. If the assertions about analyticity are omitted, the formula is also valid for [[formal power series]] and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for {{math|''F''(''g''(''z''))}} for any analytic function {{mvar|F}}; and it can be generalized to the case <math>f'(a)=0,</math> where the inverse {{mvar|g}} is a multivalued function. The theorem was proved by [[Joseph Louis Lagrange|Lagrange]]<ref>{{cite journal |author=Lagrange, Joseph-Louis |year=1770 |title=Nouvelle méthode pour résoudre les équations littérales par le moyen des séries |journal=Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin |pages=251–326 |url=http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257}} https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)</ref> and generalized by [[Hans Heinrich Bürmann]],<ref>Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: {{cite book |editor=Hindenburg, Carl Friedrich |title=Archiv der reinen und angewandten Mathematik |trans-title=Archive of pure and applied mathematics |location=Leipzig, Germany |publisher=Schäferischen Buchhandlung |year=1798 |volume=2 |chapter=Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann |trans-chapter=Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann |pages=495–499 |chapter-url=https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495}}</ref><ref>Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)</ref><ref>A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: [http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination "Rapport sur deux mémoires d'analyse du professeur Burmann,"] ''Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques'', vol. 2, pages 13–17 (1799).</ref> both in the late 18th century. There is a straightforward derivation using [[complex analysis]] and [[contour integration]];<ref>[[E. T. Whittaker]] and [[G. N. Watson]]. ''[[A Course of Modern Analysis]]''. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130</ref> the complex formal power series version is a consequence of knowing the formula for [[polynomial]]s, so the theory of [[analytic function]]s may be applied. Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the [[Formal power series#Formal residue|formal residue]], and a more direct formal [[Formal power series#The Lagrange inversion formula|proof]] is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction.<ref>{{cite book | last1=Richard | first1=Stanley | title=Enumerative combinatorics. Volume 1. | series =Cambridge Stud. Adv. Math. | volume=49 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2012 | isbn=978-1-107-60262-5 | mr=2868112 }}</ref><ref>{{Citation |last1=Ira|first1=Gessel |date=2016 |title=Lagrange inversion |journal=Journal of Combinatorial Theory, Series A |volume=144 |language=en |pages=212–249 |doi=10.1016/j.jcta.2016.06.018 |arxiv=1609.05988|mr=3534068}}</ref><ref>{{Citation |last1=Surya|first1=Erlang |last2=Warnke |first2=Lutz |date=2023 |title=Lagrange Inversion Formula by Induction |journal=The American Mathematical Monthly |volume=130 |issue=10 |language=en |pages=944–948 |doi=10.1080/00029890.2023.2251344 |arxiv=2305.17576|mr=4669236}}</ref> If {{mvar|f}} is a formal power series, then the above formula does not give the coefficients of the compositional inverse series {{mvar|g}} directly in terms for the coefficients of the series {{mvar|f}}. If one can express the functions {{mvar|f}} and {{mvar|g}} in formal power series as :<math>f(w) = \sum_{k=0}^\infty f_k \frac{w^k}{k!} \qquad \text{and} \qquad g(z) = \sum_{k=0}^\infty g_k \frac{z^k}{k!}</math> with {{math|1=''f''<sub>0</sub> = 0}} and {{math|''f''<sub>1</sub> ≠ 0}}, then an explicit form of inverse coefficients can be given in term of [[Bell polynomial]]s:<ref>Eqn (11.43), p. 437, C.A. Charalambides, ''Enumerative Combinatorics,'' Chapman & Hall / CRC, 2002</ref> :<math> g_n = \frac{1}{f_1^n} \sum_{k=1}^{n-1} (-1)^k n^\overline{k} B_{n-1,k}(\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_{n-k}), \quad n \geq 2, </math> where :<math>\begin{align} \hat{f}_k &= \frac{f_{k+1}}{(k+1)f_{1}}, \\ g_1 &= \frac{1}{f_{1}}, \text{ and} \\ n^{\overline{k}} &= n(n+1)\cdots (n+k-1) \end{align}</math> is the [[rising factorial]]. When {{math|1=''f''<sub>1</sub> = 1}}, the last formula can be interpreted in terms of the faces of [[Associahedron|associahedra]] <ref>{{cite arXiv|eprint=1709.07504|class=math.CO|title=Hopf monoids and generalized permutahedra|last1=Aguiar|first1=Marcelo|last2=Ardila|first2=Federico|year=2017}}</ref> :<math> g_n = \sum_{F \text{ face of } K_n} (-1)^{n-\dim F} f_F , \quad n \geq 2, </math> where <math> f_{F} = f_{i_{1}} \cdots f_{i_{m}} </math> for each face <math> F = K_{i_1} \times \cdots \times K_{i_m} </math> of the associahedron <math> K_n .</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)