Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Given a set of <math display=inline>k + 1</math> nodes <math>\{x_0, x_1, \ldots, x_k\}</math>, which must all be distinct, <math>x_j \neq x_m</math> for indices <math>j \neq m</math>, the '''Lagrange basis''' for polynomials of degree <math display=inline>\leq k</math> for those nodes is the set of polynomials <math display=inline>\{\ell_0(x), \ell_1(x), \ldots, \ell_k(x)\}</math> each of degree <math display=inline>k</math> which take values <math display=inline>\ell_j(x_m) = 0</math> if <math display=inline>m \neq j</math> and <math display=inline>\ell_j(x_j) = 1</math>. Using the [[Kronecker delta]] this can be written <math display=inline>\ell_j(x_m) = \delta_{jm}.</math> Each basis polynomial can be explicitly described by the product: <math display=block>\begin{aligned} \ell_j(x) &= \frac{(x-x_0)}{(x_j-x_0)} \cdots \frac{(x-x_{j-1})}{(x_j-x_{j - 1})} \frac{(x-x_{j+1})}{(x_j-x_{j+1})} \cdots \frac{(x-x_k)}{(x_j-x_k)} \\[8mu] &= \prod_{\begin{smallmatrix}0\le m\le k\\ m\neq j\end{smallmatrix}} \frac{x-x_m}{x_j-x_m} \vphantom\Bigg|. \end{aligned}</math> Notice that the numerator <math display=inline>\prod_{m \neq j}(x - x_m)</math> has <math display=inline>k</math> roots at the nodes <math display=inline>\{x_m\}_{m \neq j}</math> while the denominator <math display=inline>\prod_{m \neq j}(x_j - x_m)</math> scales the resulting polynomial so that <math display=inline>\ell_j(x_j) = 1.</math> The Lagrange interpolating polynomial for those nodes through the corresponding ''values'' <math>\{y_0, y_1, \ldots, y_k\}</math> is the linear combination: <math display=block>L(x) = \sum_{j=0}^{k} y_j \ell_j(x).</math> Each basis polynomial has degree <math display=inline>k</math>, so the sum <math display=inline>L(x)</math> has degree <math display=inline>\leq k</math>, and it interpolates the data because <math display=inline>L(x_m) = \sum_{j=0}^{k} y_j \ell_j(x_m) = \sum_{j=0}^{k} y_j \delta_{mj} = y_m.</math> The interpolating polynomial is unique. Proof: assume the polynomial <math display=inline>M(x)</math> of degree <math display=inline>\leq k</math> interpolates the data. Then the difference <math display=inline>M(x) - L(x)</math> is zero at <math display=inline>k + 1</math> distinct nodes <math display=inline>\{x_0, x_1, \ldots, x_k\}.</math> But the only polynomial of degree <math display=inline>\leq k</math> with more than <math display=inline>k</math> roots is the constant zero function, so <math display=inline>M(x) - L(x) = 0,</math> or <math display=inline>M(x) = L(x).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)