Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laguerre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Recursive definition, closed form, and generating function == One can also define the Laguerre polynomials recursively, defining the first two polynomials as <math display="block">L_0(x) = 1</math> <math display="block">L_1(x) = 1 - x</math> and then using the following [[Orthogonal polynomials#Recurrence relations|recurrence relation]] for any {{math|''k'' β₯ 1}}: <math display="block">L_{k + 1}(x) = \frac{(2k + 1 - x)L_k(x) - k L_{k - 1}(x)}{k + 1}. </math> Furthermore, <math display="block"> x L'_n(x) = nL_n (x) - nL_{n-1}(x).</math> In solution of some boundary value problems, the characteristic values can be useful: <math display="block">L_{k}(0) = 1, L_{k}'(0) = -k. </math> The '''closed form''' is <math display="block">L_n(x)=\sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{k!} x^k .</math> The [[generating function]] for them likewise follows, <math display="block">\sum_{n=0}^\infty t^n L_n(x)= \frac{1}{1-t} e^{-tx/(1-t)}.</math>The operator form is <math display="block">L_n(x) = \frac{1}{n!}e^x \frac{d^n}{dx^n} (x^n e^{-x}) </math> Polynomials of negative index can be expressed using the ones with positive index: <math display="block">L_{-n}(x)=e^xL_{n-1}(-x).</math> {| class="wikitable" style="margin:0.5em auto" |+A table of the Laguerre polynomials |- ! width="20%" | ''n'' ! <math>L_n(x)\,</math> |- | align="center" | 0 || <math>1\,</math> |- | align="center" | 1 || <math>-x+1\,</math> |- | align="center" | 2 | <math> \tfrac{1}{2} (x^2-4x+2) \,</math> |- | align="center" | 3 | <math>\tfrac{1}{6} (-x^3+9x^2-18x+6) \,</math> |- | align="center" | 4 | <math>\tfrac{1}{24} (x^4-16x^3+72x^2-96x+24) \,</math> |- | align="center" | 5 | <math>\tfrac{1}{120} (-x^5+25x^4-200x^3+600x^2-600x+120) \,</math> |- | align="center" | 6 | <math>\tfrac{1}{720} (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) \,</math> |- | align="center" | 7 | <math>\tfrac{1}{5040} (-x^7+49x^6-882x^5+7350x^4-29400x^3+52920x^2-35280x+5040) \,</math> |- | align="center" | 8 | <math>\tfrac{1}{40320} (x^8-64x^7+1568x^6-18816x^5+117600x^4-376320x^3+564480x^2-322560x+40320) \,</math> |- | align="center" | 9 | <math>\tfrac{1}{362880} (-x^9+81x^8-2592x^7+42336x^6-381024x^5+1905120x^4-5080320x^3+6531840x^2-3265920x+362880) \,</math> |- | align="center" | 10 | <math>\tfrac{1}{3628800} (x^{10}-100x^9+4050x^8-86400x^7+1058400x^6-7620480x^5+31752000x^4-72576000x^3+81648000x^2-36288000x+3628800) \,</math> |- | align="center" | ''n'' | <math>\tfrac{1}{n!} ((-x)^n + n^2(-x)^{n-1} + \dots + n({n!})(-x) + n!) \,</math> |} [[Image:Laguerre poly.svg|thumb|center|600px|The first six Laguerre polynomials.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)