Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laplace operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== The Laplace operator is a [[Second-order differential equation|second-order differential operator]] in the ''n''-dimensional [[Euclidean space]], defined as the [[divergence]] (<math>\nabla \cdot</math>) of the [[gradient]] (<math>\nabla f</math>). Thus if <math>f</math> is a [[derivative|twice-differentiable]] [[real-valued function]], then the Laplacian of <math>f</math> is the real-valued function defined by: {{NumBlk||<math display="block">\Delta f = \nabla^2 f = \nabla \cdot \nabla f </math>|{{EqRef|1}}}} where the latter notations derive from formally writing: <math display="block">\nabla = \left ( \frac{\partial }{\partial x_1} , \ldots , \frac{\partial }{\partial x_n} \right ).</math> Explicitly, the Laplacian of {{math|''f''}} is thus the sum of all the ''unmixed'' second [[partial derivative]]s in the [[Cartesian coordinates]] {{math|''x<sub>i</sub>''}}: {{NumBlk||<math display="block">\Delta f = \sum_{i=1}^n \frac {\partial^2 f}{\partial x^2_i}</math>|{{EqRef|2}}}} As a second-order differential operator, the Laplace operator maps {{math|[[Continuously differentiable|''C{{i sup|k}}'']]}} functions to {{math|''C''{{i sup|''k''β2}}}} functions for {{math|''k'' β₯ 2}}. It is a linear operator {{math|Ξ : ''C''{{i sup|''k''}}('''R'''<sup>''n''</sup>) β ''C''{{i sup|''k''β2}}('''R'''<sup>''n''</sup>)}}, or more generally, an operator {{math|Ξ : ''C''{{i sup|''k''}}(Ξ©) β ''C''{{i sup|''k''β2}}(Ξ©)}} for any [[open set]] {{math|Ξ© β '''R'''<sup>''n''</sup>}}. Alternatively, the Laplace operator can be defined as: <math display="block">\nabla^2 f(\vec{x}) = \lim_{R \rightarrow 0} \frac{2n}{R^2} (f_{shell_R} - f(\vec{x})) = \lim_{R \rightarrow 0} \frac{2n}{A_{n-1} R^{1+n}} \int_{shell_R} f(\vec{r}) - f(\vec{x}) d r^{n-1} </math> where <math>n</math> is the dimension of the space, <math>f_{shell_R} </math> is the average value of <math>f</math> on the surface of an [[n-sphere]] of radius <math>R</math>, <math>\int_{shell_R} f(\vec{r}) d r^{n-1}</math> is the surface integral over an [[n-sphere]] of radius <math>R</math>, and <math>A_{n-1}</math> is the [[Unit sphere#Volume and area|hypervolume of the boundary of a unit n-sphere]].<ref>{{Cite journal |last=Styer |first=Daniel F. |date=2015-12-01 |title=The geometrical significance of the Laplacian |url=https://pubs.aip.org/aapt/ajp/article-abstract/83/12/992/1057202/The-geometrical-significance-of-the-Laplacian?redirectedFrom=fulltext |journal=American Journal of Physics |volume=83 |issue=12 |pages=992β997 |doi=10.1119/1.4935133 |bibcode=2015AmJPh..83..992S |issn=0002-9505 |archive-url=https://www2.oberlin.edu/physics/dstyer/Electrodynamics/Laplacian.pdf |archive-date=20 November 2015}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)